Search results

1 – 6 of 6
Article
Publication date: 1 June 2010

Beichuan Yan, Richard A. Regueiro and Stein Sture

The purpose of this paper is to develop a discrete element (DE) and multiscale modeling methodology to represent granular media at their particle scale as they interface solid…

1374

Abstract

Purpose

The purpose of this paper is to develop a discrete element (DE) and multiscale modeling methodology to represent granular media at their particle scale as they interface solid deformable bodies, such as soil‐tool, tire, penetrometer, pile, etc., interfaces.

Design/methodology/approach

A three‐dimensional ellipsoidal discrete element method (DEM) is developed to more physically represent particle shape in granular media while retaining the efficiency of smooth contact interface conditions for computation. DE coupling to finite element (FE) facets is presented to demonstrate initially the development of overlapping bridging scale methods for concurrent multiscale modeling of granular media.

Findings

A closed‐form solution of ellipsoidal particle contact resolution and stiffness is presented and demonstrated for two particle, and many particle contact simulations, during gravity deposition, and quasi‐static oedometer, triaxial compression, and pile penetration. The DE‐FE facet coupling demonstrates the potential to alleviate artificial boundary effects in the shear deformation region between DEM granular media and deformable solid bodies.

Research limitations/implications

The research is being extended to couple more robustly the ellipsoidal DEM code and a higher order continuum FE code via overlapping bridging scale methods, in order to remove dependence of penetration/shear resistance on the boundary placement for DE simulation.

Practical implications

When concurrent multiscale computational modeling of interface conditions between deformable solid bodies and granular materials reaches maturity, modelers will be able to simulate the mechanical behavior accounting for physical particle sizes and flow in the interface region, and thus design their tool, tire, penetrometer, or pile accordingly.

Originality/value

A closed‐form solution for ellipsoidal particle contact is demonstrated in this paper, and the ability to couple DE to FE facets.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 October 2018

Beichuan Yan and Richard Regueiro

This paper aims to present performance comparison between O(n2) and O(n) neighbor search algorithms, studies their effects for different particle shape complexity and…

Abstract

Purpose

This paper aims to present performance comparison between O(n2) and O(n) neighbor search algorithms, studies their effects for different particle shape complexity and computational granularity (CG) and investigates the influence on superlinear speedup of 3D discrete element method (DEM) for complex-shaped particles. In particular, it aims to answer the question: O(n2) or O(n) neighbor search algorithm, which performs better in parallel 3D DEM computational practice?

Design/methodology/approach

The O(n2) and O(n) neighbor search algorithms are carefully implemented in the code paraEllip3d, which is executed on the Department of Defense supercomputers across five orders of magnitude of simulation scale (2,500; 12,000; 150,000; 1 million and 10 million particles) to evaluate and compare the performance, using both strong and weak scaling measurements.

Findings

The more complex the particle shapes (from sphere to ellipsoid to poly-ellipsoid), the smaller the neighbor search fraction (NSF); and the lower is the CG, the smaller is the NSF. In both serial and parallel computing of complex-shaped 3D DEM, the O(n2) algorithm is inefficient at coarse CG; however, it executes faster than O(n) algorithm at fine CGs that are mostly used in computational practice to achieve the best performance. This means that O(n2) algorithm outperforms O(n) in parallel 3D DEM generally.

Practical implications

Taking for granted that O(n) outperforms O(n2) unconditionally, complex-shaped 3D DEM is a misconception commonly encountered in the computational engineering and science literature.

Originality/value

The paper clarifies that performance of O(n2) and O(n) neighbor search algorithms for complex-shaped 3D DEM is affected by particle shape complexity and CG. In particular, the O(n2) algorithm outperforms the O(n) algorithm in large-scale parallel 3D DEM simulations generally, even though this outperformance is counterintuitive.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Richard Regueiro, Zheng Duan and Beichuan Yan

– The purpose of this paper is to develop a concurrent multiscale computational method for granular materials in the quasi-static loading regime.

Abstract

Purpose

The purpose of this paper is to develop a concurrent multiscale computational method for granular materials in the quasi-static loading regime.

Design/methodology/approach

Overlapped-coupling between a micropolar linear elastic one-dimensional (1D) mixed finite element (FE) model and a 1D chain of Hertzian nonlinear elastic, glued, discrete element (DE) spheres is presented. The 1D micropolar FEs and 1D chain of DEs are coupled using a bridging-scale decomposition for static analysis.

Findings

It was found that an open-window DE domain may be coupled to a micropolar continuum FE domain via an overlapping region within the bridging-scale decomposition formulation for statics. Allowing the micropolar continuum FE energy in the overlapping region to contribute to the DE energy has a smoothing effect on the DE response, especially for the rotational degrees of freedom (dofs).

Research limitations/implications

The paper focusses on 1D examples, with elastic, glued, DE spheres, and a linear elastic micropolar continuum implemented in 1D.

Practical implications

A concurrent computational multiscale method for granular materials with open-window DE resolution of the large shearing region such as at the interface with a penetrometer skin, will allow more efficient computations by reducing the more costly DE domain calculations, but not at the expense of generating artificial boundary effects between the DE and FE domains.

Originality/value

Open-window DE overlapped-coupling to FE continuum domain, accounting for rotational dofs in both DE and FE methods. Contribution of energy from micropolar FE in overlap region to underlying DE particle energy.

Article
Publication date: 16 April 2018

Boning Zhang, Richard Regueiro, Andrew Druckrey and Khalid Alshibli

This paper aims to construct smooth poly-ellipsoid shapes from synchrotron microcomputed tomography (SMT) images on sand and to develop a new discrete element method (DEM) contact…

Abstract

Purpose

This paper aims to construct smooth poly-ellipsoid shapes from synchrotron microcomputed tomography (SMT) images on sand and to develop a new discrete element method (DEM) contact detection algorithm.

Design/methodology/approach

Voxelated images generated by SMT on Colorado Mason sand are processed to construct smooth poly-ellipsoidal particle approximations. For DEM contact detection, cuboidal shape approximations to the poly-ellipsoids are used to speed up contact detection.

Findings

The poly-ellipsoid particle shape approximation to Colorado Mason sand grains is better than a simpler ellipsoidal approximation. The new DEM contact algorithm leads to significant speedup and accuracy is maintained.

Research limitations/implications

The paper limits particle shape approximation to smooth poly-ellipsoids.

Practical implications

Poly-ellipsoids provide asymmetry of particle shapes as compared to ellipsoids, thus allowing closer representation of real sand grain shapes that may be angular and unsymmetric. When incorporated in a DEM for computation, the poly-ellipsoids allow better representation of particle rolling, sliding and interlocking phenomena.

Originality/value

Method to construct poly-ellipsoid particle shapes from SMT data on real sands and computationally efficient DEM contact detection algorithm for poly-ellipsoids.

Article
Publication date: 16 April 2018

Beichuan Yan and Richard Regueiro

The purpose of this paper is to extend complex-shaped discrete element method simulations from a few thousand particles to millions of particles by using parallel computing on…

206

Abstract

Purpose

The purpose of this paper is to extend complex-shaped discrete element method simulations from a few thousand particles to millions of particles by using parallel computing on department of defense (DoD) supercomputers and to study the mechanical response of particle assemblies composed of a large number of particles in engineering practice and laboratory tests.

Design/methodology/approach

Parallel algorithm is designed and implemented with advanced features such as link-block, border layer and migration layer, adaptive compute gridding technique and message passing interface (MPI) transmission of C++ objects and pointers, for high performance optimization; performance analyses are conducted across five orders of magnitude of simulation scale on multiple DoD supercomputers; and three full-scale simulations of sand pluviation, constrained collapse and particle shape effect are carried out to study mechanical response of particle assemblies.

Findings

The parallel algorithm and implementation exhibit high speedup and excellent scalability, communication time is a decreasing function of the number of compute nodes and optimal computational granularity for each simulation scale is given. Nearly 50 per cent of wall clock time is spent on rebound phenomenon at the top of particle assembly in dynamic simulation of sand gravitational pluviation. Numerous particles are necessary to capture the pattern and shape of particle assembly in collapse tests; preliminary comparison between sphere assembly and ellipsoid assembly indicates a significant influence of particle shape on kinematic, kinetic and static behavior of particle assemblies.

Originality/value

The high-performance parallel code enables the simulation of a wide range of dynamic and static laboratory and field tests in engineering applications that involve a large number of granular and geotechnical material grains, such as sand pluviation process, buried explosion in various soils, earth penetrator interaction with soil, influence of grain size, shape and gradation on packing density and shear strength and mechanical behavior under different gravity environments such as on the Moon and Mars.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 6 of 6