Search results

1 – 10 of over 1000
Article
Publication date: 22 March 2024

Qianmai Luo, Chengshuang Sun, Ying Li, Zhenqiang Qi and Guozong Zhang

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the…

Abstract

Purpose

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the application of the modern risk management methods. As an emerging technology, digital twin has already made valuable contributions to safety risk management in many fields. Therefore, exploring the application of digital twin technology in construction safety risk management is of great significance. The purpose of this study is to explore the current research status and application potential of digital twin technology in construction safety risk management.

Design/methodology/approach

This study followed a four-stage literature processing approach as outlined in the systematic literature review procedure guidelines. It then combined the quantitative analysis tools and qualitative analysis methods to organize and summarize the current research status of digital twin technology in the field of construction safety risk management, analyze the application of digital twin technology in construction safety risk management and identify future research trends.

Findings

The research findings indicate that the application of digital twin technology in the field of construction safety risk management is still in its early stages. Based on the results of the literature analysis, this paper summarizes five aspects of digital twin technology's application in construction safety risk management: real-time monitoring and early warning, safety risk prediction and assessment, accident simulation and emergency response, safety risk management decision support and safety training and education. It also proposes future research trends based on the current research challenges.

Originality/value

This study provides valuable references for the extended application of digital twin technology and offers a new perspective and approach for modern construction safety risk management. It contributes to the enhancement of the theoretical framework for construction safety risk management and the improvement of on-site construction safety.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 December 2023

Steven Alexander Melnyk, Matthias Thürer, Constantin Blome, Tobias Schoenherr and Stefan Gold

This study focuses on (re-)introducing computer simulation as a part of the research paradigm. Simulation is a widely applied research method in supply chain and operations…

Abstract

Purpose

This study focuses on (re-)introducing computer simulation as a part of the research paradigm. Simulation is a widely applied research method in supply chain and operations management. However, leading journals, such as the International Journal of Operations and Production Management, have often been reluctant to accept simulation studies. This study provides guidelines on how to conduct simulation research that advances theory, is relevant, and matters.

Design/methodology/approach

This study pooled the viewpoints of the editorial team of the International Journal of Operations and Production Management and authors of simulation studies. The authors debated their views and outlined why simulation is important and what a compelling simulation should look like.

Findings

There is an increasing importance of considering uncertainty, an increasing interest in dynamic phenomena, such as the transient response(s) to disruptions, and an increasing need to consider complementary outcomes, such as sustainability, which many researchers believe can be tackled by big data and modern analytical tools. But building, elaborating, and testing theory by purposeful experimentation is the strength of computer simulation. The authors therefore argue that simulation should play an important role in supply chain and operations management research, but for this, it also has to evolve away from simply generating and analyzing data. Four types of simulation research with much promise are outlined: empirical grounded simulation, simulation that establishes causality, simulation that supplements machine learning, artificial intelligence and analytics and simulation for sensitive environments.

Originality/value

This study identifies reasons why simulation is important for understanding and responding to today's business and societal challenges, it provides some guidance on how to design good simulation studies in this context and it links simulation to empirical research and theory going beyond multimethod studies.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 14 April 2023

Gideon Daniel Joubert and Atanda Kamoru Raji

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this…

Abstract

Purpose

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this study aims to develop an adaptable grid code-guided renewable power plant (RPP) control real-time simulation testbed, tailored to South African grid code requirements to study grid-integrated RE’s behaviour concerning South Africa’s unique conditions.

Design/methodology/approach

The testbed is designed using MATLAB’s Simulink and live script environments, to create an adaptable model where grid, RPP and RPP guiding grid codes are tailorable. This model is integrated with OPAL-RT’s RT-LAB and brought to real-time simulation using OPAL-RT’s OP4510 simulator. Voltage, frequency and short-circuit event case studies are performed through which the testbed’s abilities and performance are assessed.

Findings

Case study results show the following. The testbed accurately represents grid code voltage and frequency requirements. RPP point of connection (POC) conditions are consistently recognized and tracked, according to which the testbed then operates simulated RPPs, validating its design. Short-circuit event simulations show the simulated wind farm supports POC conditions relative to short-circuit intensity by curtailing active power in favour of reactive power, in line with local grid code requirements.

Originality/value

To the best of the authors’ knowledge, this is the first design of an adaptable grid code-guided RPP control testbed, tailored to South African grid code requirements in line with which RPP behavioural and grid integration studies can be performed.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 December 2023

Marcel Utiyama, Dario Henrique Alliprandini, Hillary Pinto Figuerôa, Jonas Ferreira Gondim, Lucas Tollendal Gonçalves, Lorena Braga Navas and Henrique Zeno

The advent of Industry 4.0 (I4.0) and the requirements imposed on companies still need to be clarified. Companies still strive to understand I4.0 requirements and technological…

68

Abstract

Purpose

The advent of Industry 4.0 (I4.0) and the requirements imposed on companies still need to be clarified. Companies still strive to understand I4.0 requirements and technological, organizational, operational and management challenges. Current literature on I4.0 underlies the importance of a roadmap with structured steps to achieve the benefits of I4.0, mainly focused on augmenting operational performance. Therefore, this paper proposes a roadmap to implement I4.0 focused on operational management concepts, mainly aiming to augment operational performance and bridge the gap between theory and practice regarding roadmaps focused on the operational management dimension.

Design/methodology/approach

This paper follows a research approach divided into the following stages: a literature review to analyze the I4.0 roadmaps and identify the main components of I4.0; development of the proposed I4.0 roadmap presented; field research to test the roadmap by collecting data from a manufacturing company in the automotive industry; validation of the roadmap through modeling and simulation.

Findings

The authors presented a production line design with real-time control, fast response, shop floor coordination and predictive capacity. The results prove that the proposed I4.0 roadmap augments operation performance in the investigated automotive company. The main results were work in process reduction, lead time reduction, output increase, real-time control, shop floor coordination and fast response.

Originality/value

The main novelty of the proposed roadmap is to move toward I4.0 implementation with a focus on the operational management dimension. The roadmap has an innovative combination of the two approaches – lean manufacturing and factory physics – a straightforward roadmap with only three steps: (1) requirements, (2) real-time control and (3) predictive capacity, a structured definition of the approaches and operational management concepts fundamental in each step.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 1 April 2024

Frank Ato Ghansah

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the…

Abstract

Purpose

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the high complexity of accurately representing and modelling the physics behind the DTs process. This study thus organises and consolidates the fragmented literature on DTs implementation for smart buildings at the facility management stage by exploring the enablers, applications and challenges and examining the interrelationships amongst them.

Design/methodology/approach

A systematic literature review approach is adopted to analyse and synthesise the existing literature relating to the subject topic.

Findings

The study revealed six main categories of enablers of DTs for smart building at the facility management stage, namely perception technologies, network technologies, storage technologies, application technologies, knowledge-building and design processes. Three substantial categories of DTs application for smart buildings were revealed at the facility management stage: efficient operation and service monitoring, efficient building energy management and effective smart building maintenance. Subsequently, the top four major challenges were identified as being “lack of a systematic and comprehensive reference model”, “real-time data integration”, “the complexity and uncertainty nature of real-time data” and “real-time data visualisation”. An integrative framework is finally proposed by examining the interactive relationship amongst the enablers, the applications and the challenges.

Practical implications

The findings could guide facility managers/engineers to fairly understand the enablers, applications and challenges when DTs are being implemented to improve smart building performance and achieve user satisfaction at the facility management stage.

Originality/value

This study contributes to the knowledge body on DTs by extending the scope of the existing studies to identify the enablers and applications of DTs for smart buildings at the facility management stage and the specific challenges.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 7 July 2023

Vinayambika S. Bhat, Thirunavukkarasu Indiran, Shanmuga Priya Selvanathan and Shreeranga Bhat

The purpose of this paper is to propose and validate a robust industrial control system. The aim is to design a Multivariable Proportional Integral controller that accommodates…

97

Abstract

Purpose

The purpose of this paper is to propose and validate a robust industrial control system. The aim is to design a Multivariable Proportional Integral controller that accommodates multiple responses while considering the process's control and noise parameters. In addition, this paper intended to develop a multidisciplinary approach by combining computational science, control engineering and statistical methodologies to ensure a resilient process with the best use of available resources.

Design/methodology/approach

Taguchi's robust design methodology and multi-response optimisation approaches are adopted to meet the research aims. Two-Input-Two-Output transfer function model of the distillation column system is investigated. In designing the control system, the Steady State Gain Matrix and process factors such as time constant (t) and time delay (?) are also used. The unique methodology is implemented and validated using the pilot plant's distillation column. To determine the robustness of the proposed control system, a simulation study, statistical analysis and real-time experimentation are conducted. In addition, the outcomes are compared to different control algorithms.

Findings

Research indicates that integral control parameters (Ki) affect outputs substantially more than proportional control parameters (Kp). The results of this paper show that control and noise parameters must be considered to make the control system robust. In addition, Taguchi's approach, in conjunction with multi-response optimisation, ensures robust controller design with optimal use of resources. Eventually, this research shows that the best outcomes for all the performance indices are achieved when Kp11 = 1.6859, Kp12 = −2.061, Kp21 = 3.1846, Kp22 = −1.2176, Ki11 = 1.0628, Ki12 = −1.2989, Ki21 = 2.454 and Ki22 = −0.7676.

Originality/value

This paper provides a step-by-step strategy for designing and validating a multi-response control system that accommodates controllable and uncontrollable parameters (noise parameters). The methodology can be used in any industrial Multi-Input-Multi-Output system to ensure process robustness. In addition, this paper proposes a multidisciplinary approach to industrial controller design that academics and industry can refine and improve.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 July 2023

Meishan Jia and Lingmin Zhao

In China, information-based construction management (ICM) has not obtained the expected results because of the benefit game between construction enterprises and the government…

Abstract

Purpose

In China, information-based construction management (ICM) has not obtained the expected results because of the benefit game between construction enterprises and the government. Promoting ICM is a long-term, complex and dynamic game process. Therefore, an evolutionary game model is established to promote ICM.

Design/methodology/approach

MATLAB was used to conduct evolutionary game analysis on the behavioural strategies of two parties. System stability analysis and numerical simulation were conducted. The variables affecting ICM realization were analysed and comprehensively considered. The optimal stability strategy and key variables were obtained.

Findings

The results show that the system includes four evolutionarily stable strategies (ESSs) with 10 decisive parameters. Information technology costs, benefits, reputation, the government intervention level, the enterprise ICM level and the degree of reward and punishment determine the ideal ESS. Increasing tangible benefits, enhancing corporate reputation, improving the level of government guidance and reducing intervention costs can promote ICM implementation. Rewards are more effective than punishments, and appropriate rewards should be determined.

Research limitations/implications

First, reducing labour disputes, accidents and environmental pollution brings great social and ecological benefits; hence, the recognition of external benefits and the establishment of a benefit compensation mechanism by the government will be a future focus of research (Jia et al., 2020). Second, this study considered only the government and construction enterprises, and there may be other stakeholders, such as owners and the public, in the ICM adoption process, which needs further analysis (Zhang and Li, 2022). Third, this research is based on the specific context of government intervention in ICM. The selection of parameters and the determination of values were based on the national conditions in China. Therefore, the generalizability of the research results to other countries and other political contexts needs to be further improved (Hardie et al., 2013; Martínez-Román et al., 2017). Fourth, the empirical data were collected from Shandong Province and a pilot project, and the universality of the data remains to be verified. Nevertheless, the data were used only for the initial values of the simulation, which did not affect the simulation path.

Practical implications

(1) This study comprehensively summarized the benefit and cost indexes for the government and enterprises to promote ICM and constructed the payment matrix model. (2) This study determined the theoretical relation that the parameters should meet when system evolves into a certain strategy, and the research findings provide recommendations for overall control for the government and enterprises to synergistically adopt the ICM. (3) The study determined the influence of the main parameters on system evolution path and identified the core parameters, thus providing targeted improvement recommendations for the government and enterprises.

Social implications

Real-time data-based management can ensure product quality and production safety and improve decision-making and efficiency. For the government, ICM can effectively reduce project quality and safety accidents, labour disputes, supplier mix-ups and environmental pollution, thus reducing the government's management costs and improving social benefits.

Originality/value

(1) Based on the challenges of ICM implementation, the payment matrix is constructed, with the cost and benefit parameters fully considered. (2) This study determines the theoretical relationship that should be met when both parties coordinate their implementation and when enterprises implement independently, and the optimal strategy is specified. (3) Incorporating an actual case, a simulation is conducted to clarify the influence of a single parameter on the evolutionary path of behaviours. (4) A decision-making basis for governments and enterprises to control and improve ICM is provided.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 October 2021

Paulthurai Rajesh, Francis H. Shajin and Kumar Cherukupalli

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Abstract

Purpose

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Design/methodology/approach

The hybrid technique is the combination of tunicate swarm algorithm (TSA) and radial basis function neural network.

Findings

TSA gets input parameters from the rectifier outputs such as rectifier direct current (DC) voltage, DC current and time. From the input parameters, it enhances the reduced fault power of rectifier and generates training data set based on the MPPT conditions. The training data set is used in radial basis function. During the execution time, it produces the rectifier reference DC side voltage that is converted to control pulses of inverter switches.

Originality/value

Finally, the proposed method is executed in MATLAB/Simulink site, and the performance is compared with different existing methods like particle swarm optimization algorithm and hill climb searching technique. Then the output illustrates the performance of the proposed method and confirms its capability to solve issues.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 April 2023

Damianos P. Sakas, Nikolaos T. Giannakopoulos and Panagiotis Trivellas

The purpose of this paper is to examine the impact of affiliate marketing strategies as a tool for increasing customers' engagement and vulnerability over financial services. This…

Abstract

Purpose

The purpose of this paper is to examine the impact of affiliate marketing strategies as a tool for increasing customers' engagement and vulnerability over financial services. This is attempted by examining the connection between affiliate marketing factors and customers' brand engagement and vulnerability metrics.

Design/methodology/approach

The authors developed a three-staged methodological context, based on the 7 most known centralized payment network (CPN) firms' website analytical data, which begins with linear regression analysis, followed by hybrid modeling (agent-based and dynamic models), so as to simulate brand engagement and vulnerability factors' variation in a 180-day period. The deployed context ends by applying the cognitive modeling method of producing heatmaps and facial analysis of CPN websites to the selected 47 vulnerable website customers, for gathering more insights into their brand engagement.

Findings

Throughout the simulation results of the study, it becomes clear that a higher number of backlinks and referral domains tend to increase CPN firms' brand-engaged and vulnerable customers.

Research limitations/implications

From the simulation modeling process, the implication for backlinks and referral domains as factors that enhance website customers' brand engagement and vulnerability has been highlighted. A higher number of brand-engaged website customers could mean that vulnerable categories of customers would be impacted by CPNs' affiliate marketing. Improving those customers' knowledge of the financial services utility is of utmost importance.

Practical implications

The outcomes of the research indicate that online banking service providers can increase their customers' engagement with their brands by adopting affiliate marketing techniques. To avoid the increase in customers' vulnerability, marketers should aim to apply affiliate marketing strategies to domains relevant to the provided financial services.

Originality/value

The paper's outcomes provide a new approach to the literature, where the website customer's brand engagement comes out as a valuable metric for estimating online banking sector customers' vulnerability.

Details

International Journal of Bank Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-2323

Keywords

Article
Publication date: 20 March 2023

Esra Dobrucali, Emel Sadikoglu, Sevilay Demirkesen, Chengyi Zhang, Algan Tezel and Isik Ates Kiral

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and…

Abstract

Purpose

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and safety leads to enhanced safety performance. Considering the benefits observed in using technology in safety, this study aims to explore digital technologies' use and potential benefits in construction health and safety.

Design/methodology/approach

An extensive bibliometrics analysis was conducted to reveal which technologies are at the forefront of others and how these technologies are used in safety operations. The study used two different databases, Web of Science (WoS) and Scopus, to scan the literature in a systemic way.

Findings

The systemic analysis of several studies showed that the digital technologies use in construction are still a niche theme and need more assessment. The study provided that sensors and wireless technology are of utmost importance in terms of construction safety. Moreover, the study revealed that artificial intelligence, machine learning, building information modeling (BIM), sensors and wireless technologies are trending technologies compared to unmanned aerial vehicles, serious games and the Internet of things. On the other hand, the study provided that the technologies are even more effective with integrated use like in the case of BIM and sensors or unmanned aerial vehicles. It was observed that the use of these technologies varies with respect to studies conducted in different countries. The study further revealed that the studies conducted on this topic are mostly published in some selected journals and international collaboration efforts in terms of researching the topic have been observed.

Originality/value

This study provides an extensive analysis of WoS and Scopus databases and an in-depth review of the use of digital technologies in construction safety. The review consists of the most recent studies showing the benefits of using such technologies and showing the usage on a systemic level from which both scientists and practitioners can benefit to devise new strategies in technology usage.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000