Search results

11 – 20 of over 4000
Article
Publication date: 30 December 2020

Suraj Kulkarni, Suhas Suresh Ambekar and Manoj Hudnurkar

Increasing health-care costs are a major concern, especially in the USA. The purpose of this paper is to predict the hospital charges of a patient before being admitted. This will…

Abstract

Purpose

Increasing health-care costs are a major concern, especially in the USA. The purpose of this paper is to predict the hospital charges of a patient before being admitted. This will help a patient who is getting admitted: “electively” can plan his/her finance. Also, this can be used as a tool by payers (insurance companies) to better forecast the amount that a patient might claim.

Design/methodology/approach

This research method involves secondary data collected from New York state’s patient discharges of 2017. A stratified sampling technique is used to sample the data from the population, feature engineering is done on categorical variables. Different regression techniques are being used to predict the target value “total charges.”

Findings

Total cost varies linearly with the length of stay. Among all the machine learning algorithms considered, namely, random forest, stochastic gradient descent (SGD) regressor, K nearest neighbors regressor, extreme gradient boosting regressor and gradient boosting regressor, random forest regressor had the best accuracy with R2 value 0.7753. “Age group” was the most important predictor among all the features.

Practical implications

This model can be helpful for patients who want to compare the cost at different hospitals and can plan their finances accordingly in case of “elective” admission. Insurance companies can predict how much a patient with a particular medical condition might claim by getting admitted to the hospital.

Originality/value

Health care can be a costly affair if not planned properly. This research gives patients and insurance companies a better prediction of the total cost that they might incur.

Details

International Journal of Innovation Science, vol. 13 no. 1
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 1 October 2018

Vinod Nistane and Suraj Harsha

In rotary machines, the bearing failure is one of the major causes of the breakdown of machinery. The bearing degradation monitoring is a great anxiety for the prevention of…

Abstract

Purpose

In rotary machines, the bearing failure is one of the major causes of the breakdown of machinery. The bearing degradation monitoring is a great anxiety for the prevention of bearing failures. This paper aims to present a combination of the stationary wavelet decomposition and extra-trees regression (ETR) for the evaluation of bearing degradation.

Design/methodology/approach

The higher order cumulants features are extracted from the bearing vibration signals by using the stationary wavelet decomposition (stationary wavelet transform [SWT]). The extracted features are then subjected to the ETR for obtaining normal and failure state. A dominance level curve build using the dissimilarity data of test object and retained as health degradation indicator for the evaluation of bearing health.

Findings

Experiment conducts to verify and assess the effectiveness of ETR for the evaluation of performance of bearing degradation. To justify the preeminence of recommended approach, it is compared with the performance of random forest regression and multi-layer perceptron regression.

Originality/value

The experimental results indicated that the presently adopted method shows better performance for detecting the degradation more accurately at early stage. Furthermore, the diagnostics and prognostics have been getting much attention in the field of vibration, and it plays a significant role to avoid accidents.

Open Access
Article
Publication date: 27 February 2023

Vasileios Stamatis, Michail Salampasis and Konstantinos Diamantaras

In federated search, a query is sent simultaneously to multiple resources and each one of them returns a list of results. These lists are merged into a single list using the…

Abstract

Purpose

In federated search, a query is sent simultaneously to multiple resources and each one of them returns a list of results. These lists are merged into a single list using the results merging process. In this work, the authors apply machine learning methods for results merging in federated patent search. Even though several methods for results merging have been developed, none of them were tested on patent data nor considered several machine learning models. Thus, the authors experiment with state-of-the-art methods using patent data and they propose two new methods for results merging that use machine learning models.

Design/methodology/approach

The methods are based on a centralized index containing samples of documents from all the remote resources, and they implement machine learning models to estimate comparable scores for the documents retrieved by different resources. The authors examine the new methods in cooperative and uncooperative settings where document scores from the remote search engines are available and not, respectively. In uncooperative environments, they propose two methods for assigning document scores.

Findings

The effectiveness of the new results merging methods was measured against state-of-the-art models and found to be superior to them in many cases with significant improvements. The random forest model achieves the best results in comparison to all other models and presents new insights for the results merging problem.

Originality/value

In this article the authors prove that machine learning models can substitute other standard methods and models that used for results merging for many years. Our methods outperformed state-of-the-art estimation methods for results merging, and they proved that they are more effective for federated patent search.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 8 July 2019

Daniel Abreu Vasconcellos de Paula, Rinaldo Artes, Fabio Ayres and Andrea Maria Accioly Fonseca Minardi

Although credit unions are nonprofit organizations, their objectives depend on the efficient management of their resources and credit risk aligned with the principles of the…

2546

Abstract

Purpose

Although credit unions are nonprofit organizations, their objectives depend on the efficient management of their resources and credit risk aligned with the principles of the cooperative doctrine. This paper aims to propose the combined use of credit scoring and profit scoring to increase the effectiveness of the loan-granting process in credit unions.

Design/methodology/approach

This sample is composed by the data of personal loans transactions of a Brazilian credit union.

Findings

The analysis reveals that the use of statistical methods improves significantly the predictability of default when compared to the use of subjective techniques and the superiority of the random forests model in estimating credit scoring and profit scoring when compared to logit and ordinary least squares method (OLS) regression. The study also illustrates how both analyses can be used jointly for more effective decision-making.

Originality/value

Replacing subjective analysis with objective credit analysis using deterministic models will benefit Brazilian credit unions. The credit decision will be based on the input variables and on clear criteria, turning the decision-making process impartial. The joint use of credit scoring and profit scoring allows granting credit for the clients with the highest potential to pay debt obligation and, at the same time, to certify that the transaction profitability meets the goals of the organization: to be sustainable and to provide loans and investment opportunities at attractive rates to members.

Details

RAUSP Management Journal, vol. 54 no. 3
Type: Research Article
ISSN: 2531-0488

Keywords

Article
Publication date: 5 June 2017

Hao Wu

This paper aims to inspect the defects of solder joints of printed circuit board in real-time production line, simple computing and high accuracy are primary consideration factors…

Abstract

Purpose

This paper aims to inspect the defects of solder joints of printed circuit board in real-time production line, simple computing and high accuracy are primary consideration factors for feature extraction and classification algorithm.

Design/methodology/approach

In this study, the author presents an ensemble method for the classification of solder joint defects. The new method is based on extracting the color and geometry features after solder image acquisition and using decision trees to guarantee the algorithm’s running executive efficiency. To improve algorithm accuracy, the author proposes an ensemble method of random forest which combined several trees for the classification of solder joints.

Findings

The proposed method has been tested using 280 samples of solder joints, including good and various defect types, for experiments. The results show that the proposed method has a high accuracy.

Originality/value

The author extracted the color and geometry features and used decision trees to guarantee the algorithm's running executive efficiency. To improve the algorithm accuracy, the author proposes using an ensemble method of random forest which combined several trees for the classification of solder joints. The results show that the proposed method has a high accuracy.

Details

Soldering & Surface Mount Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 April 2024

Samar Shilbayeh and Rihab Grassa

Bank creditworthiness refers to the evaluation of a bank’s ability to meet its financial obligations. It is an assessment of the bank’s financial health, stability and capacity to…

Abstract

Purpose

Bank creditworthiness refers to the evaluation of a bank’s ability to meet its financial obligations. It is an assessment of the bank’s financial health, stability and capacity to manage risks. This paper aims to investigate the credit rating patterns that are crucial for assessing creditworthiness of the Islamic banks, thereby evaluating the stability of their industry.

Design/methodology/approach

Three distinct machine learning algorithms are exploited and evaluated for the desired objective. This research initially uses the decision tree machine learning algorithm as a base learner conducting an in-depth comparison with the ensemble decision tree and Random Forest. Subsequently, the Apriori algorithm is deployed to uncover the most significant attributes impacting a bank’s credit rating. To appraise the previously elucidated models, a ten-fold cross-validation method is applied. This method involves segmenting the data sets into ten folds, with nine used for training and one for testing alternatively ten times changeable. This approach aims to mitigate any potential biases that could arise during the learning and training phases. Following this process, the accuracy is assessed and depicted in a confusion matrix as outlined in the methodology section.

Findings

The findings of this investigation reveal that the Random Forest machine learning algorithm superperforms others, achieving an impressive 90.5% accuracy in predicting credit ratings. Notably, our research sheds light on the significance of the loan-to-deposit ratio as a primary attribute affecting credit rating predictions. Moreover, this study uncovers additional pivotal banking features that intensely impact the measurements under study. This paper’s findings provide evidence that the loan-to-deposit ratio looks to be the purest bank attribute that affects credit rating prediction. In addition, deposit-to-assets ratio and profit sharing investment account ratio criteria are found to be effective in credit rating prediction and the ownership structure criterion came to be viewed as one of the essential bank attributes in credit rating prediction.

Originality/value

These findings contribute significant evidence to the understanding of attributes that strongly influence credit rating predictions within the banking sector. This study uniquely contributes by uncovering patterns that have not been previously documented in the literature, broadening our understanding in this field.

Details

International Journal of Islamic and Middle Eastern Finance and Management, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8394

Keywords

Book part
Publication date: 30 September 2020

Hera Khan, Ayush Srivastav and Amit Kumar Mishra

A detailed description will be provided of all the classification algorithms that have been widely used in the domain of medical science. The foundation will be laid by giving a…

Abstract

A detailed description will be provided of all the classification algorithms that have been widely used in the domain of medical science. The foundation will be laid by giving a comprehensive overview pertaining to the background and history of the classification algorithms. This will be followed by an extensive discussion regarding various techniques of classification algorithm in machine learning (ML) hence concluding with their relevant applications in data analysis in medical science and health care. To begin with, the initials of this chapter will deal with the basic fundamentals required for a profound understanding of the classification techniques in ML which will comprise of the underlying differences between Unsupervised and Supervised Learning followed by the basic terminologies of classification and its history. Further, it will include the types of classification algorithms ranging from linear classifiers like Logistic Regression, Naïve Bayes to Nearest Neighbour, Support Vector Machine, Tree-based Classifiers, and Neural Networks, and their respective mathematics. Ensemble algorithms such as Majority Voting, Boosting, Bagging, Stacking will also be discussed at great length along with their relevant applications. Furthermore, this chapter will also incorporate comprehensive elucidation regarding the areas of application of such classification algorithms in the field of biomedicine and health care and their contribution to decision-making systems and predictive analysis. To conclude, this chapter will devote highly in the field of research and development as it will provide a thorough insight to the classification algorithms and their relevant applications used in the cases of the healthcare development sector.

Details

Big Data Analytics and Intelligence: A Perspective for Health Care
Type: Book
ISBN: 978-1-83909-099-8

Keywords

Book part
Publication date: 1 September 2021

Matthew Steeves, Son Nguyen, John Quinn and Alan Olinsky

The purpose of this study is to determine which quantitative metrics are most representative of investor sentiment in the US equity markets. Sentiment is the aggregation of…

Abstract

The purpose of this study is to determine which quantitative metrics are most representative of investor sentiment in the US equity markets. Sentiment is the aggregation of consumers', investors', and producers' thoughts and opinions about the future of the financial markets. By analyzing the change in popular economic indicators, financial market statistics, and sentiment reports, we can gain information on investor reactions. Furthermore, we will use machine learning techniques to develop predictive models that will attempt to forecast whether the stock market will go up or down based on the percent change in these indicators.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-83982-091-5

Keywords

Article
Publication date: 20 December 2022

Ganisha N.P. Athaudage, H. Niles Perera, P.T. Ranil S. Sugathadasa, M. Mavin De Silva and Oshadhi K. Herath

The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute…

Abstract

Purpose

The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (often known as COVID-19) pandemic created a massive imbalance between supply and demand which caused significant price fluctuations. The purpose of this study is to explore the influential factors affecting the international COSC in terms of consumption, production and price. Furthermore, it develops a model to predict the international crude oil price during disease outbreaks using Random Forest (RF) regression.

Design/methodology/approach

This study uses both qualitative and quantitative approaches. A qualitative study is conducted using a literature review to explore the influential factors on COSC. All the data are extracted from Web sources. In addition to COVID-19, four other diseases are considered to optimize the accuracy of predictive results. A principal component analysis is deployed to reduce the number of variables. A forecasting model is developed using RF regression.

Findings

The findings of the qualitative analysis characterize the factors that influence international COSC. The findings of quantitative analysis emphasize that production and consumption have a higher contribution to the variance of the data set. Also, this study found that the impact caused to crude oil price varies with the region. Most importantly, the model introduced using the RF technique provides a high predictive ability in short horizons such as infectious diseases. This study delivers future directions and insights to researchers and practitioners to expand the study further.

Originality/value

This is one of the few available pieces of research which uses the RF method in the context of crude oil price forecasting. Additionally, this study examines international COSC in the events of emergencies, specifically disease outbreaks using machine learning techniques.

Details

International Journal of Energy Sector Management, vol. 17 no. 6
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 6 October 2022

Tong Lv, Shi Lefeng and Weijun He

A vital job for one sharing business is dynamically dispatching shared items to balance the demand-supply of different sharing points in one sharing network. In order to construct…

Abstract

Purpose

A vital job for one sharing business is dynamically dispatching shared items to balance the demand-supply of different sharing points in one sharing network. In order to construct a highly efficient dispatch strategy, this paper proposes a new dispatching algorithm based on the findings of sharing network characteristics.

Design/methodology/approach

To that end, in this paper, the profit-changing process of single sharing points is modeled and analyzed first. And then, the characteristics of the whole sharing network are investigated. Subsequently, some interesting propositions are obtained, based on which an algorithm (named the Two-step random forest reinforcement learning algorithm) is proposed.

Findings

The authors discover that the sharing points of a common sharing network could be categorized into 6 types according to their profit dynamics; a sharing network that is made up of various combinations of sharing stations would exhibit distinct profit characteristics. Accounting for the characteristics, a specific method for guiding the dynamic dispatch of shared products is developed and validated.

Originality/value

Because the suggested method considers the interaction features between sharing points in a sharing network, its computation speeds and the convergence efficacy to the global optimum scheme are better than similar studies. It suits better to the sharing business requiring a higher time-efficiency.

Details

Industrial Management & Data Systems, vol. 122 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

11 – 20 of over 4000