Search results

1 – 10 of over 2000
Article
Publication date: 28 June 2024

Mohamed Hamed Zakaria and Ali Basha

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions…

Abstract

Purpose

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions, construction considerations, structural integrity, uncertainties in design parameters and construction and monitoring costs. Accordingly, this paper is to provide a detailed literature review on the design criteria of CPWs, specifically in cohesionless soil. This study aims to present a comprehensive overview of the current state of knowledge in this area.

Design/methodology/approach

The paper uses a literature review approach to gather information on the design criteria of CPWs in cohesionless soil. It covers various aspects such as excavation support systems (ESSs), deformation behavior, design criteria, lateral earth pressure calculation theories, load distribution methods and conventional design approaches.

Findings

The review identifies and discusses common challenges associated with the design of CPWs in cohesionless soil. It highlights the uncertainties in determining load distribution and the potential for excessive wall deformations. The paper presents various approaches and methodologies proposed by researchers to address these challenges.

Originality/value

The paper contributes to the field of geotechnical engineering by providing a valuable resource for geotechnical engineers and researchers involved in the design and analysis of CPWs in cohesionless soil. It offers insights into the design criteria, challenges and potential solutions specific to CPWs in cohesionless soil, filling a gap in the existing knowledge base. The paper draws attention to the limitations of existing analytical methods that neglect the serviceability limit state and assume rigid plastic soil behavior, highlighting the need for improved design approaches in this context.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 August 2024

Xiaohui Xiong, Jiaxu Geng, Kaiwen Wang and Xinran Wang

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method…

Abstract

Purpose

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method with multiple tandem wings installed on the train roof.

Design/methodology/approach

The improved delayed detached eddy simulation method based on shear stress transport k- ω turbulence model has been used to conduct computational fluid dynamics simulation on the train with three different wing height layouts, at a Reynolds number of 2.8 × 106. The accuracy of the numerical method has been validated by wind tunnel experiments.

Findings

The wing height layout has a significant effect on the lift, while its influence on the drag is weak. There are three distinctive vortex structures in the flow field: wingtip vortex, train body vortex and pillar vortex, which are influenced by the variation in wing height layout. The incremental wing layout reduces the mixing and merging between vortexes in the flow field, weakening the vorticity and turbulence intensity. This enhances the pressure difference between the upper and lower surfaces of both the train and wings, thereby increasing the overall lift. Simultaneously, it reduces the slipstream velocity at platform and trackside heights.

Originality/value

This paper contributes to understanding the aerodynamic characteristics and flow structure of a high-speed train coupled with wings. It provides a reference for the design aiming to achieve equivalent weight reduction through aerodynamic lift synergy in trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 September 2024

Binbin Su, Xianghe Zou, Zhaoxiang Wang and Lirong Huang

Inspired by the high-friction performance of the soft toe pads of tree frogs, this study aims to investigate the effect of elastic deformation on the lubrication properties of…

Abstract

Purpose

Inspired by the high-friction performance of the soft toe pads of tree frogs, this study aims to investigate the effect of elastic deformation on the lubrication properties of squeezing films inside soft tribocontacts with microstructured surface under wet conditions.

Design/methodology/approach

A one-dimensional hydrodynamic extrusion model was used to study the film lubrication characteristics of conformal contact. The lubrication characteristics of the extruded film, including load-carrying capacity, liquid flow and surface elastic deformation, were obtained through the simultaneously iterative solution of the fluid-governing and deformation equations.

Findings

The results show that the hydrodynamic pressure is approximating parabolically and symmetrically distributed in the contact area, and the peak value appears in the center of the extrusion surface. Elastic deformation increases the thickness of the liquid film, weakens the bearing capacity and homogenizes the liquid flow rate of inside soft friction contact. The magnitude of this effect greatly increases as the initial liquid film thickness decreases. Moreover, the elastic deformation directly affects the average film thickness of the extrusion contact. Narrow and shallow microchannels are found to result in a more prominent elastic deformation on the microstructured soft surface.

Originality/value

These results present a design for soft tribocontacts suitable for submerged or wet environments involving high friction, such as wiper blades, in situ flexible electrons and underwater robots.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0049/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2024

Yongsheng Zhao, Jiaqing Luo, Ying Li, Caixia Zhang and Honglie Ma

The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.

Abstract

Purpose

The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.

Design/methodology/approach

This paper proposes an artificial neural network model based on IPSO algorithm for intelligent monitoring of hydrostatic turntables.

Findings

The theoretical model proposed in this paper improves the accuracy of the working performance of the static pressure turntable and provides a new direction for intelligent monitoring of the static pressure turntable. Therefore, the theoretical research in this paper is novel.

Originality/value

Theoretical novelties: an ANN model based on the IPSO algorithm is designed to monitor the load-bearing performance of a static pressure turntable intelligently; this study show that the convergence accuracy and convergence speed of the IPSO-NN model have been improved by 52.55% and 10%, respectively, compared to traditional training models; and the proposed model could be used to solve the multidimensional nonlinear problem in the intelligent monitoring of hydrostatic turntables.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0081/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 July 2024

Xuan Zhang, Jin-Bo Jiang, Xudong Peng, Zhongjin Ni and Jun Pan

The purpose of this paper is to improve the seal performance by proper design of the cavity shape of the damping holes, especially the rotordynamics characteristics of the…

Abstract

Purpose

The purpose of this paper is to improve the seal performance by proper design of the cavity shape of the damping holes, especially the rotordynamics characteristics of the hole-pattern damped seal (HPDS).

Design/methodology/approach

A new damping seal structure that comprises a circle-shaped cavity and two directional leaf-shaped cavities with a dovetail-shaped diversion groove is proposed. The comparative study on the sealing characteristics of dovetail-shape, leaf-shape and classical circular HPDSs was carried out using ANSYS CFX.

Findings

The dovetail-shaped HPDS significantly outperformed two other damping seal designs in leakage and rotordynamic performance. At a rotating speed of 7,500 rpm, it showed a 25% reduction in leakage, a 23% increase in average effective damping and a 119% increase in average effective stiffness. The cross-coupled stiffness Kxy shifted from positive to negative, reducing circumferential flow. The dovetail's inclined leaf-shaped grooves create a double vortex that slows jet velocity in the seal clearance and alters spiral flow direction, resulting in a uniform pressure distribution and enhanced rotor stability at low frequencies.

Originality/value

This study proposes a novel HPDS with dovetail-shaped diversion grooves. The seal can realize the simultaneous improvement of rotordynamics and leakage characteristics compared to the current seal structure.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 February 2024

Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla and Lakshminarayana Pallavarapu

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix…

Abstract

Purpose

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix. Electrically conducting biofluid flows with Ohmic heating have many biomedical and industrial applications. The purpose of this study is to provide the significance of the effects of Ohmic heating and viscous dissipation on electrically conducting Casson nanofluid flow driven by peristaltic pumping through a vertical porous channel.

Design/methodology/approach

In this analysis, the non-Newtonian properties of fluid will be characterized by the Casson fluid model. The long wavelength approach reduces the complexity of the governing system of coupled partial differential equations with non-linear components. Using a regular perturbation approach, the solutions for the flow quantities are established. The fascinating and essential characteristics of flow parameters such as the thermal Grashof number, nanoparticle Grashof number, magnetic parameter, Brinkmann number, permeability parameter, Reynolds number, Casson fluid parameter, thermophoresis parameter and Brownian movement parameter on the convective peristaltic pumping are presented and thoroughly addressed. Furthermore, the phenomenon of trapping is illustrated visually.

Findings

The findings indicate that intensifying the permeability and Casson fluid parameters boosts the temperature distribution. It is observed that the velocity profile is elevated by enhancing the thermal Grashof number and perturbation parameter, whereas it reduces as a function of the magnetic parameter and Reynolds number. Moreover, trapped bolus size upsurges for greater values of nanoparticle Grashof number and magnetic parameter.

Originality/value

There are some interesting studies in the literature to explain the nature of the peristaltic flow of non-Newtonian nanofluids under various assumptions. It is observed that there is no study in the literature as investigated in this paper.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 August 2024

A. Gholami, S. F. Hosseini, Kamel Milani Shirvan, Sadiq M. Sait and R. Ellahi

Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has…

Abstract

Purpose

Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has been carried out in the field of construction, operation and maintenance of silos. One of the important issues that must be investigated in silos is the behavior of their structure when the materials inside them are unloaded. Structural vibrations and the creation of normal noise usually discharge the granular of material from the silo. Both of phenomena are undesirable due to the problems they can cause to the structure and its surroundings. According to the said issues, this paper aims to investigate the vibration problem of the sulfur storage silo of the first refinery during discharge with the help of measuring experimental vibration data and simulating the silo model.

Design/methodology/approach

In the experimental investigation, the main cause of the vibration of the 400-ton silo in the refinery is used. The mass asymmetry phenomenon when the silo is filled is also considered. The experimental results are authenticated by software analysis too.

Findings

The results showed that the natural frequency of the ninth mode is almost equal to the natural frequency of sulfur discharge from the silos and has the largest shape change in the structure and vibration range. It is also concluded that the larger sulfur silo (400 tons) should be prioritized over the smaller sulfur silo (200 tons) in the emptying program, and the 400 tons silo should never be emptied even through the 200 tons silo is empty.

Originality/value

An attempt is made to investigate the issue of vibration in sulfur storage silos in the first refinery of South Pars in the form of experimental investigation and modal analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 September 2024

Trong Nghia-Nguyen, Le Thanh Cuong, Samir Khatir, Le Minh Hoang, Salisa Chaiyaput and Magd Abdel Wahab

Concrete gravity dams are important structures for flood control and hydraulic power generation, but they can be vulnerable to seismic activity due to ground movements that…

Abstract

Purpose

Concrete gravity dams are important structures for flood control and hydraulic power generation, but they can be vulnerable to seismic activity due to ground movements that trigger crack propagation.

Design/methodology/approach

To better understand the factors that affect the stability of concrete gravity dams against concrete fracture during earthquakes, a concrete plastic damage model has been utilized with two new expressions to simulate compressive and tensile damage variables.

Findings

The findings showed that the crack patterns were strongly influenced by the concrete’s strength. The simulation results led to the proposal of appropriate concrete properties aimed at minimizing damage. These findings, together with the proposed model, offer significant insights that can enhance the safety and stability of concrete gravity dam structures.

Originality/value

This study offers a comprehensive analysis of concrete behavior under varying grades and introduces simple and robust expressions for evaluating concrete parameters in plastic damage models. The versatility of these expressions enables accurate simulation of stress-strain curves for different grades, resulting in excellent agreement between model results and experimental findings. The simulation of the Koyna Dam case study demonstrates a similarity in crack patterns with previous simulations and field observations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 August 2024

Weizheng Zhang and Dongmin Han

The purpose of this study is to investigate the sealing performance of different deep groove mechanical seals by considering the changing law of dynamic pressure effect and…

Abstract

Purpose

The purpose of this study is to investigate the sealing performance of different deep groove mechanical seals by considering the changing law of dynamic pressure effect and temperature gradient caused by high speed and high pressure.

Design/methodology/approach

A thermohydrodynamic lubrication model (THD) of the mechanical seal was constructed and solved using the commercial software FLUENT. The pressure and temperature distributions of the fluid under different groove types, as well as the sealing performance under different pressures, rotational speeds and sealing gaps, are obtained.

Findings

The annular groove (AG) can effectively reduce the temperature, and the T-type spiral groove (STG) can effectively inhibit the leakage. The increase of pressure and rotational speed leads to the enhancement of dynamic pressure effect and the increase of leakage, while the sealing gap increases and the leakage increases while taking away more heat. The choice of groove type is very important to the impact of sealing performance.

Originality/value

In consideration of the beneficial effect of deep grooves on cooling performance, the viscous temperature equation and the impact of the thermodynamic lubrication model are evaluated in conjunction with the sealing performance of four distinct groove types. This approach provides a theoretical basis for the optimal design of mechanical seals.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0184/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000