Search results

1 – 5 of 5
Article
Publication date: 1 April 2008

Rajneesh Kumar and B.S. Hundal

The propagation of circular crested waves in a fluid saturated incompressible porous plate is analyzed. The frequency equations, for symmetric and anti‐symmetric waves, connecting…

Abstract

The propagation of circular crested waves in a fluid saturated incompressible porous plate is analyzed. The frequency equations, for symmetric and anti‐symmetric waves, connecting the phase velocity with wave number are derived. At short wave length limits the frequency equations for symmetric and antisymmetric waves in a stress free plate reduce to Rayleigh type surface wave frequency equation and the finite thickness plate appears as a semi‐infinite medium. The results at various steps are compared with the corresponding results of classical theory and finally the variations of phase velocity, attenuation coefficient with wave number and displacements amplitudes with distance from the boundary of the plate is presented graphically and discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 2003

N.B. Naduvinamani, Syeda Tasneem Fathima and P.S. Hiremath

In the present paper, the squeeze film lubrication between anisotropic porous rectangular plates with lubricants containing polar additives has been studied. The lubricants…

Abstract

In the present paper, the squeeze film lubrication between anisotropic porous rectangular plates with lubricants containing polar additives has been studied. The lubricants containing additives has been modelled as a Stokes couple stress fluid. The more realistic Beavers‐Joseph slip boundary conditions are used to derive the most general form of Reynolds equation, which account for the effects due to the lubricant additives and the anisotropic nature of porous material. The eigen type of expressions are obtained for the fluid film pressure, load carrying capacity and squeeze film time. It is observed that the effect of the lubricant additives is to increase the load carrying capacity and the squeeze film time as compared to the Newtonian lubricants. Further for anisotropic porous surface, the maximum load carrying capacity is attained for the rectangular (non‐square) plates.

Details

Industrial Lubrication and Tribology, vol. 55 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 January 2021

Angel Rawat, Raghu Piska, A. Rajagopal and Mokarram Hossain

This paper aims to present a nonlocal gradient plasticity damage model to demonstrate the crack pattern of a body, in an elastic and plastic state, in terms of damage law. The…

Abstract

Purpose

This paper aims to present a nonlocal gradient plasticity damage model to demonstrate the crack pattern of a body, in an elastic and plastic state, in terms of damage law. The main objective of this paper is to reconsider the nonlocal theory by including the material in-homogeneity caused by damage and plasticity. The nonlocal nature of the strain field provides a regularization to overcome the analytical and computational problems induced by softening constitutive laws. Such an approach requires C1 continuous approximation. This is achieved by using an isogeometric approximation (IGA). Numerical examples in one and two dimensions are presented.

Design/methodology/approach

In this work, the authors propose a nonlocal elastic plastic damage model. The nonlocal nature of the strain field provides a regularization to overcome the analytical and computational problems induced by softening constitutive laws. An additive decomposition of strains in to elastic and inelastic or plastic part is considered. To obtain stable damage, a higher gradient order is considered for an integral equation, which is obtained by the Taylor series expansion of the local inelastic strain around the point under consideration. The higher-order continuity of nonuniform rational B-splines (NURBS) functions used in isogeometric analysis are adopted here to implement in a numerical scheme. To demonstrate the validity of the proposed model, numerical examples in one and two dimensions are presented.

Findings

The proposed nonlocal elastic plastic damage model is able to predict the damage in an accurate manner. The numerical results are mesh independent. The nonlocal terms add a regularization to the model especially for strain softening type of materials. The consideration of nonlocality in inelastic strains is more meaningful to the physics of damage. The use of IGA framework and NURBS basis functions add to the nonlocal nature in approximations of the field variables.

Research limitations/implications

The method can be extended to 3D. The model does not consider the effect of temperature and the dissipation of energy due to temperature. The method needs to be implemented for more real practical problems and compare with experimental work. This is an ongoing work.

Practical implications

The nonlocal models are suitable for predicting damage in quasi brittle materials. The use of elastic plastic theories allows to capture the inelastic deformations more accurately.

Social implications

The nonlocal models are suitable for predicting damage in quasi brittle materials. The use of elastic plastic theories allows to capture the inelastic deformations more accurately.

Originality/value

The present work includes the formulation and implementation of a nonlocal damage plasticity model using an isogeometric discretization, which is the novel contribution of this paper. An implicit gradient enhancement is considered to the inelastic strain. During inelastic deformations, the proposed strain tensor partitioning allows the use of a distinct potential surface and distinct failure criterion for both damage and plasticity models. The use of NURBS basis functions adds to more nonlocality in the approximation.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 October 2020

Shalini M. Patil, C.V. Vinay and Dinesh P.A.

The purpose of this paper is to study the amalgamated consequences of nonNewtonian fluid and permeability for nonporous journal spinning with constant tangential velocity inside a…

Abstract

Purpose

The purpose of this paper is to study the amalgamated consequences of nonNewtonian fluid and permeability for nonporous journal spinning with constant tangential velocity inside a rough porous bearing.

Design/methodology/approach

The flow is assumed to have developed under low Reynolds number, and the flow is governed by reduced Navier–Stokes equations. Based on Stokes theory for couple-stress fluid, a closed form of nonNewtonian Reynolds equation is obtained. Finite difference based multigrid method is adopted to study the various parameters of journal bearings.

Findings

It is found that bearing attributes such as pressure distribution and weight carrying capacity are commanding for nonNewtonian couple-stress fluid compared to the classical Newtonian case.

Originality/value

The multigrid method for the Reynolds equation is used, which accelerates the convergence rate of the solution and is independent of the grid size. The effects of couple-stress fluid promote the enhanced pressure distribution in the fluid. Both increased weight bearing capacity and delayed squeezing time reduce the skin-friction and hence take longer time to come in contact with each other.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2020-0051/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 February 2021

Parvez Alam, Suprava Jena, Irfan Anjum Badruddin, Tatagar Mohammad Yunus Khan and Sarfaraz Kamangar

This paper aims to study the attenuation and dispersion phenomena of shear waves in anelastic and elastic porous strips. Numerical investigations are performed for the phase and…

Abstract

Purpose

This paper aims to study the attenuation and dispersion phenomena of shear waves in anelastic and elastic porous strips. Numerical investigations are performed for the phase and damped velocity profiles of the wave. For numerical computation purposes, water-saturated limestone and kerosene oil saturated sandstone for the first and second porous strips, respectively. Some other peculiarities have been observed and discussed.

Design/methodology/approach

Dispersion and attenuation characteristic of the shear wave propagations have been studied in an inhomogeneous poro-anelastic strip of finite thickness, which is clamped between an inhomogeneous poroelastic strip of finite thickness and an elastic half-space. Both the strips are initially stressed and the half-space is self-weighted. Analytical methods are used to calculate the interior deformations of the model with the involvement of special functions. The determination of the frequency equation, which includes the Bessel’s and Whittaker functions, has been obtained using the prescribed boundary conditions.

Findings

Impacts of attenuation coefficient, dissipation factor, inhomogeneities, initial stresses, Biot’s gravity, porosity and thickness ratio parameters on the velocity profile of the wave have been demonstrated through the graphical visuals. These parameters are playing an important role and working as a catalyst in affecting the propagation behaviour of the wave.

Originality/value

Inclusion of the concept of doubly layered initially stressed inhomogeneous porous structure of elastic and anelastic medium bedded over a self-weighted half-space medium brings a novelty to the existing literature related to the study of shear wave. It may be helpful to geologists, seismologists and structural engineers in the development of theoretical and practical studies.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 5 of 5