Search results

1 – 5 of 5
Article
Publication date: 2 April 2024

Yi Liu, Rui Ning, Mingxin Du, Shuanghe Yu and Yan Yan

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork…

Abstract

Purpose

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork production, the development of efficient and robust meat cutting algorithms are hot issues. The uncertain and dynamic nature of the online porcine belly cutting imposes a challenge for the robot to identify and cut efficiently and accurately. Based on the above challenges, an online porcine belly cutting method using 3D laser point cloud is proposed.

Design/methodology/approach

The robotic cutting system is composed of an industrial robotic manipulator, customized tools, a laser sensor and a PC.

Findings

Analysis of experimental results shows that by comparing with machine vision, laser sensor-based robot cutting has more advantages, and it can handle different carcass sizes.

Originality/value

An image pyramid method is used for dimensionality reduction of the 3D laser point cloud. From a detailed analysis of the outward and inward cutting errors, the outward cutting error is the limiting condition for reducing the segments by segmentation algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 January 2024

Nirmal Singh, Harmanjit Singh Banga, Jaswinder Singh and Rajnish Sharma

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by…

Abstract

Purpose

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by implementing 3D printing technology under the “Makerspace.”

Design/methodology/approach

The paper provides a brief account of various tools and techniques used by veterinary and animal sciences institutions for information dissemination amongst the stakeholders and associated challenges with a focus on the use of 3D printing technology to overcome the bottlenecks. An overview of the 3D printing technology has been provided following the instances of use of this novel technology in veterinary and animal sciences. An initiative of the University Library, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, to harness the potential of this technology in disseminating information amongst livestock stakeholders has been discussed.

Findings

3D printing has the potential to enhance learning in veterinary and animal sciences by providing hands-on exposure to various anatomical structures, such as bones, organs and blood vessels, without the need for a cadaver. This approach enhances students’ spatial understanding and helps them better understand anatomical concepts. Libraries can enhance their visibility and can contribute actively to knowledge dissemination beyond traditional library services.

Originality/value

The ideas about how to harness the potential of 3D printing in knowledge dissemination amongst livestock sector stakeholders have been elaborated. This promotes creativity amongst librarians enabling them to think how they can engage in knowledge dissemination thinking out of the box.

Details

Library Hi Tech News, vol. 41 no. 2
Type: Research Article
ISSN: 0741-9058

Keywords

Article
Publication date: 30 April 2024

Iwan Vanany, Jan Mei Soon-Sinclair and Nur Aini Rahkmawati

The demand for halal food products is increasing globally. However, fraudulent activities in halal products and certification are also rising. One strategy to ensure halal…

Abstract

Purpose

The demand for halal food products is increasing globally. However, fraudulent activities in halal products and certification are also rising. One strategy to ensure halal integrity in the food supply chain is applying halal blockchain technology. However, to date, a few studies have assessed the factors and variables that facilitate or hinder the adoption of this technology. Thus, this study aims to assess the significant factors and variables affecting the adoption of halal blockchain technology.

Design/methodology/approach

A Delphi-based approach, using semi-structured interviews, was conducted with three food companies (chicken slaughterhouses, milk processing plants and frozen food companies). The cognitive best–worst method determines the significant factors and variables to prioritise halal blockchain adoption decisions.

Findings

The results showed that the most significant factors were coercive pressure and halal strategy. Nineteen variables were identified to establish a valid hierarchical structure for halal blockchain adoption in the Indonesian food industry. The five significant variables assessed through the best–worst method were demand, regulator, supply side, sustainability of the company’s existence and main customers.

Practical implications

The proposed halal blockchain decision structure can assist food companies in deciding whether to adopt the technology.

Originality/value

This study proposes 19 variables that establish a valid hierarchical structure of halal blockchain adoption for the Indonesian food industry.

Details

Journal of Islamic Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 5 of 5