Search results

1 – 8 of 8
Article
Publication date: 6 March 2023

Punsara Hettiarachchi, Subodha Dharmapriya and Asela Kumudu Kulatunga

This study aims to minimize the transportation-related cost in distribution while utilizing a heterogeneous fixed fleet to deliver distinct demand at different geographical…

Abstract

Purpose

This study aims to minimize the transportation-related cost in distribution while utilizing a heterogeneous fixed fleet to deliver distinct demand at different geographical locations with a proper workload balancing approach. An increased cost in distribution is a major problem for many companies due to the absence of efficient planning methods to overcome operational challenges in distinct distribution networks. The problem addressed in this study is to minimize the transportation-related cost in distribution while using a heterogeneous fixed fleet to deliver distinct demand at different geographical locations with a proper workload balancing approach which has not gained the adequate attention in the literature.

Design/methodology/approach

This study formulated the transportation problem as a vehicle routing problem with a heterogeneous fixed fleet and workload balancing, which is a combinatorial optimization problem of the NP-hard category. The model was solved using both the simulated annealing and a genetic algorithm (GA) adopting distinct local search operators. A greedy approach has been used in generating an initial solution for both algorithms. The paired t-test has been used in selecting the best algorithm. Through a number of scenarios, the baseline conditions of the problem were further tested investigating the alternative fleet compositions of the heterogeneous fleet. Results were analyzed using analysis of variance (ANOVA) and Hsu’s MCB methods to identify the best scenario.

Findings

The solutions generated by both algorithms were subjected to the t-test, and the results revealed that the GA outperformed in solution quality in planning a heterogeneous fleet for distribution with load balancing. Through a number of scenarios, the baseline conditions of the problem were further tested investigating the alternative fleet utilization with different compositions of the heterogeneous fleet. Results were analyzed using ANOVA and Hsu’s MCB method and found that removing the lowest capacities trucks enhances the average vehicle utilization with reduced travel distance.

Research limitations/implications

The developed model has considered both planning of heterogeneous fleet and the requirement of work load balancing which are very common industry needs, however, have not been addressed adequately either individually or collectively in the literature. The adopted solution methodologies to solve the NP-hard distribution problem consist of metaheuristics, statistical analysis and scenario analysis are another significant contribution. The planning of distribution operations not only addresses operational-level decision, through a scenario analysis, but also strategic-level decision has also been considered.

Originality/value

The planning of distribution operations not only addresses operational-level decisions, but also strategic-level decisions conducting a scenario analysis.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 March 2023

Jiaojiao Xu and Sijun Bai

This paper aims to develop an algorithm to study the impact of dynamic resource disruption on project makespan and provide a suitable resource disruption ratio for various complex…

Abstract

Purpose

This paper aims to develop an algorithm to study the impact of dynamic resource disruption on project makespan and provide a suitable resource disruption ratio for various complex industrial and emergency projects.

Design/methodology/approach

This paper addresses the RCPSP in dynamic environments, which assumes resources will be disrupted randomly, that is, the information about resource disruption is not known in advance. To this end, a reactive scheduling model is proposed for the case of random dynamic disruptions of resources. To solve the reactive scheduling model, a hybrid genetic algorithm with a variable neighborhood search is proposed.

Findings

The results obtained on the PSLIB instances prove the performance advantage of the algorithm; through sensitivity analysis, it can be obtained, the project makespan increases exponentially as the number of disruptions increase. Furthermore, if more than 50% of the project's resources are randomly disrupted, the project makespan will be significantly impacted.

Originality/value

The paper focuses on the impact of dynamic resource disruptions on project makespan. Few studies have considered stochastic, dynamic resource uncertainty. In addition, this research proposes a reasonable scheduling algorithm for the research problem, and the conclusions drawn from the research provide decision support for project managers.

Details

Kybernetes, vol. 53 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 23 April 2024

Emerson Norabuena-Figueroa, Roger Rurush-Asencio, K. P. Jaheer Mukthar, Jose Sifuentes-Stratti and Elia Ramírez-Asís

The development of information technologies has led to a considerable transformation in human resource management from conventional or commonly known as personnel management to…

Abstract

The development of information technologies has led to a considerable transformation in human resource management from conventional or commonly known as personnel management to modern one. Data mining technology, which has been widely used in several applications, including those that function on the web, includes clustering algorithms as a key component. Web intelligence is a recent academic field that calls for sophisticated analytics and machine learning techniques to facilitate information discovery, particularly on the web. Human resource data gathered from the web are typically enormous, highly complex, dynamic, and unstructured. Traditional clustering methods need to be upgraded because they are ineffective. Standard clustering algorithms are enhanced and expanded with optimization capabilities to address this difficulty by swarm intelligence, a subset of nature-inspired computing. We collect the initial raw human resource data and preprocess the data wherein data cleaning, data normalization, and data integration takes place. The proposed K-C-means-data driven cuckoo bat optimization algorithm (KCM-DCBOA) is used for clustering of the human resource data. The feature extraction is done using principal component analysis (PCA) and the classification of human resource data is done using support vector machine (SVM). Other approaches from the literature were contrasted with the suggested approach. According to the experimental findings, the suggested technique has extremely promising features in terms of the quality of clustering and execution time.

Details

Technological Innovations for Business, Education and Sustainability
Type: Book
ISBN: 978-1-83753-106-6

Keywords

Article
Publication date: 10 May 2024

Ye Li, Chengyun Wang and Junjuan Liu

In this essay, a new NDAGM(1,N,α) power model is recommended to resolve the hassle of the distinction between old and new information, and the complicated nonlinear traits between…

Abstract

Purpose

In this essay, a new NDAGM(1,N,α) power model is recommended to resolve the hassle of the distinction between old and new information, and the complicated nonlinear traits between sequences in real behavior systems.

Design/methodology/approach

Firstly, the correlation aspect sequence is screened via a grey integrated correlation degree, and the damped cumulative generating operator and power index are introduced to define the new model. Then the non-structural parameters are optimized through the genetic algorithm. Finally, the pattern is utilized for the prediction of China’s natural gas consumption, and in contrast with other models.

Findings

By altering the unknown parameters of the model, theoretical deduction has been carried out on the newly constructed model. It has been discovered that the new model can be interchanged with the traditional grey model, indicating that the model proposed in this article possesses strong compatibility. In the case study, the NDAGM(1,N,α) power model demonstrates superior integrated performance compared to the benchmark models, which indirectly reflects the model’s heightened sensitivity to disparities between new and old information, as well as its ability to handle complex linear issues.

Practical implications

This paper provides a scientifically valid forecast model for predicting natural gas consumption. The forecast results can offer a theoretical foundation for the formulation of national strategies and related policies regarding natural gas import and export.

Originality/value

The primary contribution of this article is the proposition of a grey multivariate prediction model, which accommodates both new and historical information and is applicable to complex nonlinear scenarios. In addition, the predictive performance of the model has been enhanced by employing a genetic algorithm to search for the optimal power exponent.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 25 April 2024

Abdul-Manan Sadick, Argaw Gurmu and Chathuri Gunarathna

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is…

35

Abstract

Purpose

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is qualitative, posing additional challenges to achieving accurate cost estimates. Additionally, there is a lack of tools that use qualitative project information and forecast the budgets required for project completion. This research, therefore, aims to develop a model for setting project budgets (excluding land) during the pre-conceptual stage of residential buildings, where project information is mainly qualitative.

Design/methodology/approach

Due to the qualitative nature of project information at the pre-conception stage, a natural language processing model, DistilBERT (Distilled Bidirectional Encoder Representations from Transformers), was trained to predict the cost range of residential buildings at the pre-conception stage. The training and evaluation data included 63,899 building permit activity records (2021–2022) from the Victorian State Building Authority, Australia. The input data comprised the project description of each record, which included project location and basic material types (floor, frame, roofing, and external wall).

Findings

This research designed a novel tool for predicting the project budget based on preliminary project information. The model achieved 79% accuracy in classifying residential buildings into three cost_classes ($100,000-$300,000, $300,000-$500,000, $500,000-$1,200,000) and F1-scores of 0.85, 0.73, and 0.74, respectively. Additionally, the results show that the model learnt the contextual relationship between qualitative data like project location and cost.

Research limitations/implications

The current model was developed using data from Victoria state in Australia; hence, it would not return relevant outcomes for other contexts. However, future studies can adopt the methods to develop similar models for their context.

Originality/value

This research is the first to leverage a deep learning model, DistilBERT, for cost estimation at the pre-conception stage using basic project information like location and material types. Therefore, the model would contribute to overcoming data limitations for cost estimation at the pre-conception stage. Residential building stakeholders, like clients, designers, and estimators, can use the model to forecast the project budget at the pre-conception stage to facilitate decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 8 February 2024

Joseph F. Hair, Pratyush N. Sharma, Marko Sarstedt, Christian M. Ringle and Benjamin D. Liengaard

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis

2804

Abstract

Purpose

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis differentiated indicator weights produced by partial least squares structural equation modeling (PLS-SEM).

Design/methodology/approach

The authors rely on prior literature as well as empirical illustrations and a simulation study to assess the efficacy of equal weights estimation and the CEI.

Findings

The results show that the CEI lacks discriminatory power, and its use can lead to major differences in structural model estimates, conceals measurement model issues and almost always leads to inferior out-of-sample predictive accuracy compared to differentiated weights produced by PLS-SEM.

Research limitations/implications

In light of its manifold conceptual and empirical limitations, the authors advise against the use of the CEI. Its adoption and the routine use of equal weights estimation could adversely affect the validity of measurement and structural model results and understate structural model predictive accuracy. Although this study shows that the CEI is an unsuitable metric to decide between equal weights and differentiated weights, it does not propose another means for such a comparison.

Practical implications

The results suggest that researchers and practitioners should prefer differentiated indicator weights such as those produced by PLS-SEM over equal weights.

Originality/value

To the best of the authors’ knowledge, this study is the first to provide a comprehensive assessment of the CEI’s usefulness. The results provide guidance for researchers considering using equal indicator weights instead of PLS-SEM-based weighted indicators.

Details

European Journal of Marketing, vol. 58 no. 13
Type: Research Article
ISSN: 0309-0566

Keywords

1 – 8 of 8