Search results

1 – 10 of 41
Open Access
Article
Publication date: 28 August 2021

Luca Gabriele De Vivo Nicoloso, Joshua Pelz, Herb Barrack and Falko Kuester

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and…

2786

Abstract

Purpose

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and uncomfortable. This paper aims to outline advancements made by a multidisciplinary research group, interested in advancing the restoration of human motion through accessible lower limb prostheses.

Design/methodology/approach

Customization, comfort and functionality are the most important metrics reported by prosthetists and patients. The work of this paper presents the design and manufacturing of a custom made, cost-effective and functional three-dimensional (3D) printed transtibial prosthesis monocoque design. The design of the prosthesis integrates 3D imaging, modelling and optimization techniques coupled with additive manufacturing.

Findings

The successful fabrication of a functional monocoque prosthesis through 3D printing indicates the workflow may be a solution to the worldwide accessibility crisis. The digital workflow developed in this work offers great potential for providing prosthetic devices to rural communities, which lack access to skilled prosthetic physicians. The authors found that using the workflow together with 3D printing, this study can create custom monocoque prostheses (Figure 16). These prostheses are comfortable, functional and properly aligned. In comparison with traditional prosthetic devices, the authors slowered the average cost, weight and time of production by 95%, 55% and 95%, respectively.

Social implications

This novel digital design and manufacturing workflow has the potential to democratize and globally proliferate access to prosthetic devices, which restore the patient’s mobility, quality of life and health. LIMBER’s toolbox can reach places where proper prosthetic and orthotic care is not available. The digital workflow reduces the cost of making custom devices by an order of magnitude, enabling broader reach, faster access and improved comfort. This is particularly important for children who grow quickly and need new devices every few months or years, timely access is both physically and psychologically important.

Originality/value

In this manuscript, the authors show the application of digital design techniques for fabricating prosthetic devices. The proposed workflow implements several advantageous changes and, most importantly, digitally blends the three components of a transtibial prosthesis into a single, 3D printable monocoque device. The development of a novel unibody transtibial device that is properly aligned and adjusted digitally, greatly reduces the number of visits an amputee must make to a clinic to have a certified prosthetist adjust and modify their prosthesis. The authors believe this novel workflow has the potential to ease the worldwide accessibility crisis for prostheses.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 2 November 2012

62

Abstract

Details

Pigment & Resin Technology, vol. 41 no. 6
Type: Research Article
ISSN: 0369-9420

Content available
80

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 1
Type: Research Article
ISSN: 0003-5599

Open Access
Article
Publication date: 26 July 2021

David Marschall, Sigfrid-Laurin Sindinger, Herbert Rippl, Maria Bartosova and Martin Schagerl

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of…

Abstract

Purpose

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of this study was to develop a design methodology for such additively manufactured prototypes, considering efficient generation and structural simulation of boundary conformal non-periodic lattices, optimization of production parameters as well as experimental validation.

Design/methodology/approach

Multi-curved, sandwich structure-based demonstrators were designed, simulated and experimentally tested with boundary conformal lattice cells. The demonstrator’s non-periodic lattice cells were simplified by forward homogenization processes. To represent the stiffness of the top and bottom face sheet, constant isotropic and mapped transversely isotropic simulation approaches were compared. The dimensional accuracy of lattice cells and demonstrators were measured with a gauge caliper and a three-dimensional scanning system. The optimized process parameters for lattice structures were transferred onto a large volume laser sintering system. The stiffness of each finite element analysis was verified by an experimental test setup including a digital image correlation system.

Findings

The stiffness prediction of the mapped was superior to the constant approach and underestimated the test results with −6.5%. Using a full scale fairing the applicability of the development process was successfully demonstrated.

Originality/value

The design approach elaborated in this research covers aspects from efficient geometry generation over structural simulation to experimental testing of produced parts. This methodology is not only relevant in the context of motor sports but is transferrable for all additively manufactured large scale components featuring a complex lattice sub-structure and is, therefore, relevant across industries.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

485

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 16 September 2022

Jan Sher Akmal, Mika Salmi, Roy Björkstrand, Jouni Partanen and Jan Holmström

Introducing additive manufacturing (AM) in a multinational corporation with a global spare parts operation requires tools for a dynamic supplier selection, considering both cost…

2273

Abstract

Purpose

Introducing additive manufacturing (AM) in a multinational corporation with a global spare parts operation requires tools for a dynamic supplier selection, considering both cost and delivery performance. In the switchover to AM from conventional manufacturing, the objective of this study is to find situations and ways to improve the spare parts service to end customers.

Design/methodology/approach

In this explorative study, the authors develop a procedure – in collaboration with the spare parts operations managers of a case company – for dynamic operational decision-making for the selection of spare parts supply from multiple suppliers. The authors' design proposition is based on a field experiment for the procurement and delivery of 36 problematic spare parts.

Findings

The practice intervention verified the intended outcomes of increased cost and delivery performance, yielding improved customer service through a switchover to AM according to situational context. The successful operational integration of dynamic additive and static conventional supply was triggered by the generative mechanisms of highly interactive model-based supplier relationships and insignificant transaction costs.

Originality/value

The dynamic decision-making proposal extends the product-specific make-to-order practice to the general-purpose build-to-model that selects the mode of supply and supplier for individual spare parts at an operational level through model-based interactions with AM suppliers. The successful outcome of the experiment prompted the case company to begin the introduction of AM into the company's spare parts supply chain.

Details

International Journal of Operations & Production Management, vol. 42 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 4 August 2021

Francesco Sillani, Dominik Wagner, Marvin Aaron Spurek, Lukas Haferkamp, Adriaan Bernardus Spierings, Manfred Schmid and Konrad Wegener

Powder bed-based additive manufacturing (AM) is a promising family of technologies for industrial applications. The purpose of this study is to provide a new metrics based on the…

Abstract

Purpose

Powder bed-based additive manufacturing (AM) is a promising family of technologies for industrial applications. The purpose of this study is to provide a new metrics based on the analysis of the compaction behavior for the evaluation of flowability of AM powders.

Design/methodology/approach

In this work, a novel qualification methodology based on a camera mounted onto a commercially available tap density meter allowed to assess the compaction behavior of a selection of AM materials, both polymers and metals. This methodology automatizes the reading of the powder height and obtains more information compared to ASTM B527. A novel property is introduced, the “tapping modulus,” which describes the packing speed of a powdered material and is related to a compression/vibration powder flow.

Findings

The compaction behavior was successfully correlated with the dynamic angle of repose for polymers, but interestingly not for metals, shedding more light to the different flow behavior of these materials.

Research limitations/implications

Because of the chosen materials, the results may lack generalizability. For example, the application of this methodology outside of AM would be interesting.

Originality/value

This paper suggests a new methodology for assessing the flowing behavior of AM materials when subjected to compression. The device is inexpensive and easy to implement in a quality assurance environment, being thus interesting for industrial applications.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 June 1998

73

Abstract

Details

Pigment & Resin Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 27 June 2008

65

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 4
Type: Research Article
ISSN: 0003-5599

Open Access
Article
Publication date: 14 January 2020

Antonio Armillotta

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both…

Abstract

Purpose

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both software processing and part fabrication.

Design/methodology/approach

A demonstrative software tool was developed to apply user-selected textures to existing meshes. The computational procedure is a three-dimensional extension of the solid texturing method used in computer graphics. The tool was tested for speed and quality of results, considering also the pre- and post-processing operations required. Some textured meshes were printed by different processes to test build speed and quality.

Findings

The tool can handle models with realistic complexity in acceptable computation times. Parts are built without difficulties or extra-costs achieving a good aesthetic yield of the texture.

Research limitations/implications

The tool cannot reproduce sample patterns but requires the development of a generation algorithm for different type of textures. Mesh processing operations may take a long time when very fine textures are added to large parts.

Practical implications

Direct texturing can help obtain parts with aesthetic or functional textures without the need for surface post-treatments, which can be especially difficult and expensive for plastic parts.

Originality/value

The proposed method improves the uniformity and consistency of textures compared to existing approaches, and can support future systematic studies on the detail resolution of AM processes.

1 – 10 of 41