Search results

1 – 10 of 709
Article
Publication date: 1 December 1968

M.H. Burke

SINCE the introduction of plasma are welding, in its simplest form, the process and technology has made extremely rapid strides. It is the object of this paper to explain, in…

Abstract

SINCE the introduction of plasma are welding, in its simplest form, the process and technology has made extremely rapid strides. It is the object of this paper to explain, in simple terms, the various types of plasma systems, equipments and applications for which they can be used.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 11 September 2009

Julie Bénech, Pierre Freton, Jean‐Jacques Gonzalez and Mathieu Masquère

The purpose of this paper is to develop a mathematical tool and an experimental platform to be able to reconstruct thermal plasmas in three dimensions (3D) in order to…

Abstract

Purpose

The purpose of this paper is to develop a mathematical tool and an experimental platform to be able to reconstruct thermal plasmas in three dimensions (3D) in order to characterize 3D plasma and to validate models in 3D. Indeed, a lack of experimental data allowing validating 3D models exists.

Design/methodology/approach

The paper is realized with a transferred argon arc configuration. The 3D character is due to the form of the cathode electrode. The reactor design is defined by a previous theoretical study. This previous paper has shown that tomographic method through four views allows reconstructing 3D object. The light emitted by the plasma along four directions (four windows) is so spectrally resolved and treated by a multiplicative algebraic reconstruction technique algorithm. Following the emissivity profiles, two methods are used, the absolute line intensity method, and for an out off‐axis maximum of the emissivity the Folwer Milne method.

Findings

After a validating approach of the optical measurements in symmetrical configuration using Abel inversion, the reconstructed method is used. The results show the possibility of the tomographic method spectrally and spatially resolved to be applied to thermal plasma in order to characterise the medium and to validate the 3D models. The plasma medium is well described with a spatial resolution equal to 0.2 mm.

Research limitations/implications

The method is applicable to thermal plasma presenting high emissivity. Even if the theoretical reconstruction method is applied to low temperatures or to theoretical plasma presenting out off‐axis of emissivity, future researches need to be performed to analyse the ability of the method to spatially resolve the areas presenting low emissivity.

Originality/value

The paper's originality can be demonstrated by the poor number of studies in thermal plasma reconstruction in 3D. Studies on plasma imaging can be found but not spectrally resolved. The special care on the spectral acquisition along the plasma radius combined with the tomographic reconstruction method lead to the originality of this paper.

Details

Sensor Review, vol. 29 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 November 2020

Xiangman Zhou, Qihua Tian, Yixian Du, Yancheng Zhang, Xingwang Bai, Yicha Zhang, Haiou Zhang, Congyang Zhang and Youlu Yuan

The purpose of this paper is to find a theoretical reference to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition in wire arc additive manufacturing…

Abstract

Purpose

The purpose of this paper is to find a theoretical reference to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition in wire arc additive manufacturing (WAAM) and ensure the effect of the gas shielding and stable heat and mass transfer in deposition process. The multiphysical numerical simulation and physical experiment are used for validation.

Design/methodology/approach

In this study, welding torch tilt deposition and external parallel magnetic field–assisted deposition are presented to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition, and a three-dimensional numerical model is developed to simulate the arc of torch tilt overlapping deposition and external parallel magnetic field–assisted overlapping deposition.

Findings

The comparison of simulated results indicate that the angle of welding torch tilt equal to 20° and the magnetic flux density of external transverse magnetic field equal to 0.001 Tesla are capable of balancing the electric arc and shielding gas effectively, respectively. The arc profiles captured by a high-speed camera match well with simulated results.

Originality/value

These studies of this paper can provide a theoretical basis and reference for the calibration and optimization of WAAM process parameters.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 August 2018

Grzegorz Raniszewski

The purpose of this paper is to focus on the influence of electromagnetic field during the arc discharge carbon nanotubes synthesis. It proposes modeling of electromagnetic field…

Abstract

Purpose

The purpose of this paper is to focus on the influence of electromagnetic field during the arc discharge carbon nanotubes synthesis. It proposes modeling of electromagnetic field distribution to calculate forces in the area of arcing. The paper presents the influence of this field on the final product of the synthesis.

Design/methodology/approach

A short literature review of the arc discharge systems supported by electromagnetic field is presented. The technical solution of the coil placement is discussed. An experimental research is described. The research system constructed preceded by a series of measurements and modeling is analyzed.

Findings

The paper describes the significant meaning of the electromagnetic field during the synthesis. The electromagnetic field forces the slow rotation of the carbon plasma column where carbon nanotubes are formed. It leads to the improvement in yield.

Research limitations/implications

Because the research is limited to one type of geometry of the reactor, the results may vary in different reactors. However, the influence of the electromagnetic field is confirmed. Therefore, researchers are encouraged to investigate the influence of the electromagnetic coil in the applied systems.

Practical implications

The systems with a coil inside the reactor require the application of complex cooling systems or/and additional screens. The work proposes a technical solution based on the coil placed outside the reactor. Therefore, it simplifies the construction and increases the yield.

Social implications

The high yield of the high-quality nanotubes opens new technical possibilities for electronics and electrical engineering.

Originality/value

The paper identifies a connection between the electromagnetic field, the arc discharge movement, plasma jet, carbon nanotubes containing deposit and the yield.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2019

Meng-Ran Liao, Tang Chen and Wei-Jian Lv

In this study, the authors performed a numerical investigation on the heating of a hot cathode with a conical tip by atmospheric arc, taking into account of the two temperature…

Abstract

Purpose

In this study, the authors performed a numerical investigation on the heating of a hot cathode with a conical tip by atmospheric arc, taking into account of the two temperature sheath effect for the first time.

Design/methodology/approach

The Schottky effect at cathode surface is considered, which is based on the analytic solution of a one-dimensional sheath model. The unified model allows one to predict the cathode-plasma heat transfer.

Findings

The total heat flux to cathode surface is smaller than its components’ heat flux due to electron back diffusion is as large as that due to ion flux with the increase of cathode length the total heat transported to the cathode body has an obvious decrease.

Originality/value

It is found that two kinds of solution exist for the cathode with a 140° conical tip; however, only one stable solution exists when the conical angle is reduced to 130°.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 April 2022

Zhao-Qin Wang, Yu Shi and Xiao-Rong Wang

The bisection inverse search bow height control interpolation (BIS-BHCI) method for nonuniform rational B-splines (NURBS) curve is proposed to accomplish the serial robotic plasma

Abstract

Purpose

The bisection inverse search bow height control interpolation (BIS-BHCI) method for nonuniform rational B-splines (NURBS) curve is proposed to accomplish the serial robotic plasma cladding of planar complex curve coating with high precision.

Design/methodology/approach

A plasma–computer integrated cladding system is constructed based on a Motoman-UP6 serial robot and a plasma power. Based on the BIS-BHCI method, combining the serial robotic kinematics with the NURBS curve model, an offline plasma cladding software is developed for Motoman-UP6. Before plasma cladding, a planar NURBS curve coating is designed and defined and its BIS-BHCI is carried out with proper parameters. Then, the cladding programs are generated using the BIS-BHCI results and the robotic kinematics and inputted into the serial robotic controller. After that, the plasma cladding of the planar NURBS curve coating is implemented based on the Motoman-UP6 serial robot.

Findings

The simulation and plasma cladding for the NURBS curve coating shows that the BIS-BHCI method is feasible and effective. Plasma cladding of complex NURBS curve coating based on serial robot is feasible and effective.

Originality/value

The complex NURBS curve coating is prepared based on a serial robot platform for the first time. It provides a theoretical and technical basis for plasma cladding to produce surface coatings of industrial complex parts. With the increasing application of complex parts, the plasma cladding process of complex NURBS curve coatings has a broad application prospect.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 2005

Harpreet Singh, D. Puri and S. Prakash

Plasma spray coating technologies are capable of depositing a wide range of compositions without significantly heating the substrate. The objective is to characterise plasma

1392

Abstract

Purpose

Plasma spray coating technologies are capable of depositing a wide range of compositions without significantly heating the substrate. The objective is to characterise plasma sprayed metallic coatings on a Fe‐based superalloy.

Design/methodology/approach

NiCrAlY, Ni‐20Cr, Ni3Al and Stellite‐6 metallic coatings were deposited on a Fe‐based superalloy (32Ni‐21Cr‐0.3Al‐0.3Ti‐1.5Mn‐1.0Si‐0.1C‐Bal Fe) by the shrouded plasma spray process. The coatings were characterised in relation to coating thickness, porosity, microhardness and microstructure. The high temperature oxidation behaviour of the coatings was investigated in brief. The techniques used in the present investigation include metallography, XRD and SEM/EDAX.

Findings

All the coatings exhibited a lamellar structure with distinctive boundaries along with the presence of some porosity and oxide inclusions. The microhardness of the coatings was observed to vary with the distance from the coating‐substrate interface. The St‐6 coating had the maximum microhardness, whereas the lowest hardness was exhibited by the Ni3Al coating. The phases revealed by XRD of the coatings confirmed the formation of solid solutions, whereas EDAX analysis of the as‐sprayed coatings confirmed the presence of basic elements of the coating powders. So far as high temperature oxidation behaviour is concerned, all of the coatings followed the parabolic rate law and resulted in the formation of protective oxide scales on the substrate superalloy.

Originality/value

The plasma spray process provides the possibility of developing coatings of Ni3Al as well as commercial available NiCrAlY, Ni‐20Cr and St‐6 powders on Fe‐based superalloy Superfer 800H

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 May 2006

Wurikaixi Aiyiti, Wanhua Zhao, Bingheng Lu and Yiping Tang

To fabricate fully dense components with low costs, a rapid prototyping (RP) system based on micro‐plasma arc welding (MPAW) was developed. The appropriate process parameters were…

2211

Abstract

Purpose

To fabricate fully dense components with low costs, a rapid prototyping (RP) system based on micro‐plasma arc welding (MPAW) was developed. The appropriate process parameters were investigated to build the parts with good mechanical properties and surface smoothness.

Design/methodology/approach

A simplified overlapping model between deposited tracks was established to investigate the relationships among the overlapping parameters, such as the ratio of width to height of the deposited track cross‐section (λ), scan spacing and overlapping ratio. Some ER308L stainless steel parts were built by different overlapping parameters, and the surface smoothness, tensile strength and elongation of the parts were tested.

Findings

The overlapped surface smoothness, tensile strength and elongation of the parts built with larger λ were better than those built with smaller λ. The longitudinal tensile strength and elongation of the parts were better than the transverse data.

Research limitations/implications

The scanning direction obviously affected the tensile strength and elongation of the parts, so the multi‐directional scanning mode should be used to get isotropic parts.

Originality/value

This MPAW‐based RP system provides a solution to build fully dense metal parts with relatively lower costs. The appropriate process parameters can be obtained with the developed overlapping model.

Details

Rapid Prototyping Journal, vol. 12 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 November 1968

D.C. Moore

FEW materials have made such an impact on the engineering scene as have titanium and its alloys. Whilst titanium was first isolated in 1825 it was not at that time recognised as…

Abstract

FEW materials have made such an impact on the engineering scene as have titanium and its alloys. Whilst titanium was first isolated in 1825 it was not at that time recognised as having very desirable properties and no convenient method of extraction was found until 1940. Since then no efforts have been spared in developing the metal and its alloys, rapid progress having been made as reflected by the fact that titanium is now available in wide variety. Its high strength to weight ratio, especially when alloyed, offers considerable attractions to the aircraft industry, and in this field manufacturers have not been slow in taking advantage of the increased pay loads to be gained by using titanium and its alloys in place of more dense materials. Probably the largest single factor in enabling full exploitation is the case with which titanium can be joined by a number of processes and techniques, a brief review of which is given in the present paper. The costs of using the various processes arc not considered in this review, but nonetheless, it is noteworthy that economic aspects as well as technical requirements continue to stimulate further development.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 11
Type: Research Article
ISSN: 0002-2667

1 – 10 of 709