Search results

1 – 10 of over 4000
Article
Publication date: 19 July 2024

Yangmin Xie, Qiaoni Yang, Rui Zhou, Zhiyan Cao and Hang Shi

Fast obstacle avoidance path planning is a challenging task for multijoint robots navigating through cluttered workspaces. This paper aims to address this issue by proposing an…

13

Abstract

Purpose

Fast obstacle avoidance path planning is a challenging task for multijoint robots navigating through cluttered workspaces. This paper aims to address this issue by proposing an improved path-planning method based on the distorted space (DS) method, specifically designed for high-dimensional complex environments.

Design/methodology/approach

The proposed method, termed topology-preserved distorted space (TP-DS) method, mitigates the limitations of the original DS method by preserving space topology through elastic deformation. By applying distinct spring constants, the TP-DS autonomously shrinks obstacles to microscopic areas within the configuration space, maintaining consistent topology. This enhancement extends the application scope of the DS method to handle complex environments effectively.

Findings

Comparative analysis demonstrates that the proposed TP-DS method outperforms traditional methods regarding planning efficiency. Successful obstacle avoidance tasks in the cluttered workspace validate its applicability on a physical 6-DOF manipulator, highlighting its potential for industrial implementations.

Originality/value

The novel TP-DS method generates a topology-preserved collision-free space by leveraging elastic deformation and shows significant capability and efficiency in planning obstacle-avoidance paths in complex application scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 25 January 2024

Atef Gharbi

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR)…

Abstract

Purpose

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific objectives and purposes outlined in the paper include: introducing a new methodology that combines Q-learning with dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the convergence to optimal solutions and demonstrating through simulation results that the proposed method, dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving convergence to an optimal action strategy more efficiently, requiring less time and improving path exploration with fewer steps and higher average rewards.

Design/methodology/approach

The design adopted in this paper to achieve its purposes involves the following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function, while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning process. These mechanisms provide feedback to the robot based on its actions, guiding it to make decisions that lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance metrics: the design incorporates performance metrics to measure the success of the approach. These metrics likely include measures of convergence speed, exploration efficiency, the number of steps taken and the average rewards obtained during the robot’s navigation.

Findings

The findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle avoidance: the paper’s proposed approach, DRQL, leads to more efficient path planning and obstacle avoidance for MR. This is achieved through the combination of Q-learning and dynamic reward mechanisms, which guide the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence of the MR to optimal action strategies. Dynamic rewards help reduce the need for blind exploration, which typically consumes time and this results in a quicker attainment of optimal solutions. (3) Reduced exploration time: the integration of dynamic reward mechanisms significantly reduces the time required for exploration during navigation. This reduction in exploration time contributes to more efficient and quicker path planning. (4) Improved path exploration: the results from the simulations indicate that the DRQL method leads to improved path exploration in unknown environments. The robot takes fewer steps to reach its destination, which is a crucial indicator of efficiency. (5) Higher average rewards: the paper’s findings reveal that MR using DRQL receive higher average rewards during their navigation. This suggests that the proposed approach results in better decision-making and more successful navigation.

Originality/value

The paper’s originality stems from its unique combination of Q-learning and dynamic rewards, its focus on efficiency and speed in MR navigation and its ability to enhance path exploration and average rewards. These original contributions have the potential to advance the field of mobile robotics by addressing critical challenges in path planning and obstacle avoidance.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 27 August 2024

Sami Shahid, Ziyang Zhen and Umair Javaid

Multi-unmanned aerial vehicle (UAV) systems have succeeded in gaining the attention of researchers in diversified fields, especially in the past decade, owing to their capability…

Abstract

Purpose

Multi-unmanned aerial vehicle (UAV) systems have succeeded in gaining the attention of researchers in diversified fields, especially in the past decade, owing to their capability to operate in complex scenarios in a coordinated manner. Path planning for UAV swarms is a challenging task depending upon the environmental conditions, the limitations of fixed-wing UAVs and the swarm constraints. Multiple optimization techniques have been studied for path-planning problems. However, there are local optimum and convergence rate problems. This study aims to propose a multi-UAV cooperative path planning (CoPP) scheme with four-dimensional collision avoidance and simultaneous arrival time.

Design/methodology/approach

A new two-step optimization algorithm is developed based on multiple populations (MP) of disturbance-based modified grey-wolf optimizer (DMGWO). The optimization is performed based on the objective function subject to multi constraints, including collision avoidance, same minimum time of flight and threat and obstacle avoidance in the terrain while meeting the UAV constraints. Comparative simulations using two different algorithms are performed to authenticate the proposed DMGWO.

Findings

The critical features of the proposed MP-DMGWO-based CoPP algorithm are local optimum avoidance and rapid convergence of the solution, i.e. fewer iterations as compared to the comparative algorithms. The efficiency of the proposed method is evident from the comparative simulation results.

Originality/value

A new algorithm DMGWO is proposed for the CoPP problem of UAV swarm. The local best position of each wolf is used in addition to GWO. Besides, a disturbance is introduced in the best solutions for faster convergence and local optimum avoidance. The path optimization is performed based on a newly designed objective function that depends upon multiple constraints.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 July 2024

Chang Yuan, Xinyu Wu, Donghai Zeng and Baoren Li

To solve the problem that the underwater vehicles is difficult to turn and exit in a small range in the face of complex marine environment such as concave and ring under the…

Abstract

Purpose

To solve the problem that the underwater vehicles is difficult to turn and exit in a small range in the face of complex marine environment such as concave and ring under the limitation of its limitation of its shape and maximum steering angle, this paper aims to propose an improved ant colony algorithm based on trap filling strategy and energy consumption constraint strategy.

Design/methodology/approach

Firstly, on the basis of searching the global path, the disturbed terrain was pre-filled in the complex marine environments. Based on the energy constraint strategy, the ant colony algorithm was improved to make the search path of the underwater vehicle meet the requirements of the lowest energy consumption and the shortest path in the complex obstacle environment.

Findings

The simulation results showed that the modified grid environment diagram effectively reduced the redundancy search and improved the optimization efficiency. Aiming at the problem of “the shortest distance is not the lowest energy consumption” in the traditional path optimization algorithm, the energy consumption level was reduced by 26.41% after increasing the energy consumption constraint, although the path length and the number of inflection points were slightly higher than the shortest path constraint, which was more conducive to the navigation of underwater vehicles.

Originality/value

The method proposed in this paper is not only suitable for trajectory planning of underwater robots but also suitable for trajectory planning of land robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 July 2024

Run Yang, Jingru Li, Taiyun Zhu, Di Hu and Erbao Dong

Gas-insulated switchgear (GIS) stands as a pivotal component in power systems, susceptible to partial discharge occurrences. Nevertheless, manual inspection proves…

Abstract

Purpose

Gas-insulated switchgear (GIS) stands as a pivotal component in power systems, susceptible to partial discharge occurrences. Nevertheless, manual inspection proves labor-intensive, exhibits a low defect detection rate. Conventional inspection robots face limitations, unable to perform live line measurements or adapt effectively to diverse environmental conditions. This paper aims to introduce a novel solution: the GIS ultrasonic partial discharge detection robot (GBOT), designed to assume the role of substation personnel in inspection tasks.

Design/methodology/approach

GBOT is a mobile manipulator system divided into three subsystems: autonomous location and navigation, vision-guided and force-controlled manipulator and data detection and analysis. These subsystems collaborate, incorporating simultaneous localization and mapping, path planning, target recognition and signal processing, admittance control. This paper also introduces a path planning method designed to adapt to the substation environment. In addition, a flexible end effector is designed for full contact between the probe and the device.

Findings

The robot fulfills the requirements for substation GIS inspections. It can conduct efficient and low-cost path planning with narrow passages in the constructed substation map, realizes a sufficiently stable detection contact and perform high defect detection rate.

Practical implications

The robot mitigates the labor intensity of grid maintenance personnel, enhances inspection efficiency and safety and advances the intelligence and digitization of power equipment maintenance and monitoring. This research also provides valuable insights for the broader application of mobile manipulators in diverse fields.

Originality/value

The robot is a mobile manipulator system used in GIS detection, offering a viable alternative to grid personnel for equipment inspections. Comparing with the previous robotic systems, this system can work in live electrical detection, demonstrating robust environmental adaptability and superior efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 August 2024

Sijie Tong, Qingchen Liu, Qichao Ma and Jiahu Qin

This paper aims to address the safety concerns of path-planning algorithms in dynamic obstacle warehouse environments. It proposes a method that uses improved artificial potential…

Abstract

Purpose

This paper aims to address the safety concerns of path-planning algorithms in dynamic obstacle warehouse environments. It proposes a method that uses improved artificial potential fields (IAPF) as expert knowledge for an improved deep deterministic policy gradient (IDDPG) and designs a hierarchical strategy for robots through obstacle detection methods.

Design/methodology/approach

The IAPF algorithm is used as the expert experience of reinforcement learning (RL) to reduce the useless exploration in the early stage of RL training. A strategy-switching mechanism is introduced during training to adapt to various scenarios and overcome challenges related to sparse rewards. Sensor inputs, including light detection and ranging data, are integrated to detect obstacles around waypoints, guiding the robot toward the target point.

Findings

Simulation experiments demonstrate that the integrated use of IDDPG and the IAPF method significantly enhances the safety and training efficiency of path planning for mobile robots.

Originality/value

This method enhances safety by applying safety domain judgment rules to improve APF’s security and designing an obstacle detection method for better danger anticipation. It also boosts training efficiency through using IAPF as expert experience for DDPG and the classification storage and sampling design for the RL experience pool. Additionally, adjustments to the actor network’s update frequency expedite convergence.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 2 July 2024

Zhiqiang Zhou, Yong Fu and Wei Wu

The human-following task is a fundamental function in human–robot collaboration. It requires a robot to recognize and locate a target person, plan a path and avoid obstacles. To…

Abstract

Purpose

The human-following task is a fundamental function in human–robot collaboration. It requires a robot to recognize and locate a target person, plan a path and avoid obstacles. To enhance the applicability of the human-following task in various scenarios, it should not rely on a prior map. This paper aims to introduce a human-following method that meets these requirements.

Design/methodology/approach

For the identification and localization of the target person (ILTP), this paper proposes an approach that integrates data from a camera, a light detection and ranging (LiDAR) and a ultra-wideband (UWB) anchor. For path planning and obstacle avoidance, a modified timed-elastic-bands (TEB) algorithm is introduced.

Findings

Compared to the UWB-only method, where only UWB is used to locate the target person, the proposed ILTP method in this paper reduces the localization error by 41.82%. Experimental results demonstrate the effectiveness of the ILTP and the modified TEB method under various challenging conditions. Such as crowded environments, multiple obstacles, the target person being occluded and the target person moving out of the robot’s field of view. The complete experimental videos are available for viewing on https://youtu.be/ZKbrNE1sePM.

Originality/value

This paper offers a novel solution for human-following tasks. The proposed ILTP method can recognize the target person among multiple individuals, determine whether the target person is lost and publish the target person’s position at a frequency of 20 Hz. The modified TEB algorithm does not rely on a prior map. It can plan paths and avoid obstacles effectively.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2024

Nasim Babazadeh, Jochen Teizer, Hans-Joachim Bargstädt and Jürgen Melzner

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as…

200

Abstract

Purpose

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as long-term auditory impairments for construction workers. The limited effectiveness of passive noise control measures due to the close proximity of the construction site to surrounding neighborhoods often results in complaints and eventually lawsuits. These can then lead to delays and cost overruns for the construction projects.

Design/methodology/approach

The paper proposes a novel approach to integrating construction noise as an additional dimension into scheduling construction works. To achieve this, a building information model, including the three-dimensional construction site layout object geometry, resource allocation and schedule information, is utilized. The developed method explores further project data that are typically available, such as the assigned equipment to a task, its precise location, and the estimated duration of noisy tasks. This results in a noise prediction model by using noise mapping techniques and suggesting less noisy alternative ways of construction. Finally, noise data obtained from sensors in a case study contribute real values for validating the proposed approach, which can be used later to suggest solutions for noise mitigation.

Findings

The results of this study indicate that the proposed approach can accurately predict construction noise given a few available parameters from digital project planning and sensors installed on a construction site. Proactively integrating construction noise control measures into the planning process has benefits for both residents and construction managers, as it reduces construction noise-related disturbances, prevents unexpected legal issues and ensures the health and well-being of the workforce.

Originality/value

While previous research has concentrated on real-time data collection using sensors, a more effective solution would also involve addressing and mitigating construction noise during the pre-construction work planning phase.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 4000