Search results

1 – 10 of over 4000
Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2024

Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…

Abstract

Purpose

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.

Design/methodology/approach

First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.

Findings

Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.

Originality/value

This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 July 2024

Yinsi Chen, Yuan Li, Heng Liu and Yi Liu

The purpose of this study is to identify the dynamic parameters of journal bearings in asymmetric rotor systems without additional test runs or excitations.

Abstract

Purpose

The purpose of this study is to identify the dynamic parameters of journal bearings in asymmetric rotor systems without additional test runs or excitations.

Design/methodology/approach

An asymmetric rotor-bearing test rig was set up for the identification experiment. Comparations were made between the measured response of the asymmetric rotor and the symmetric rotor. The mathematical model of the asymmetric rotor is established by the finite element method. The identification algorithm is based on the model of the rotor and the measured vibration response to identify bearing parameters. The influence of modeling error and measurement noise on the identification results are numerically analyzed. The dynamic parameters of the journal bearings under different rotational speeds are identified and compared with the theoretical values calculated by the perturbation method.

Findings

The experiment results show that the vibration characteristics of the asymmetric rotor and the symmetric rotor are different. The numerical evaluation of the identification algorithm shows that the algorithm is accurate and has good robustness to modeling error and measurement noise. The identified dynamic parameters agree reasonably well with the parameters derived from the theoretical bearing model.

Originality/value

The proposed identification method uses the unique vibration characteristics of asymmetric rotors to identify the bearing dynamic parameters. As the method does not require excitations or additional test runs, it is suitable for the field test.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0096/

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2023

Anwar Zorig, Ahmed Belkheiri, Bachir Bendjedia, Katia Kouzi and Mohammed Belkheiri

The great value of offline identification of machine parameters is when the machine manufacturer does not provide its parameters. Most machine control strategies require parameter…

Abstract

Purpose

The great value of offline identification of machine parameters is when the machine manufacturer does not provide its parameters. Most machine control strategies require parameter values, and some circumstances in the industrial sector only require offline identification. This paper aims to present a new offline method for estimating induction motor parameters based on least squares and a salp swarm algorithm (SSA).

Design/methodology/approach

The central concept is to use the classic least squares (LS) method to acquire the majority of induction machine (IM) constant parameters, followed by the SSA method to obtain all parameters and minimize errors.

Findings

The obtained results showed that the LS method gives good results in simulation based on the assumption that the measurements are noise-free. However, unlike in simulations, the LS method is unable to accurately identify the machine’s parameters during the experimental test. On the contrary, the SSA method proves higher efficiency and more precision for IM parameter estimation in both simulations and experimental tests.

Originality/value

After performing a primary identification using the technique of least squares, the initial intention of this study was to apply the SSA for the purpose of identifying all of the machine’s parameters and minimizing errors. These two approaches use the same measurement from a simple running test of an IM, and they offer a quick processing time. Therefore, this combined offline strategy provides a reliable model based on the identified parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 December 2023

Jian Zhou, Shuyu Liu, Jian Lu and Xinyu Liu

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s…

Abstract

Purpose

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s method and to solve the problem of low model prediction accuracy caused by low-frequency domain curve fitting in the small unmanned helicopter frequency domain parameter identification method.

Design/methodology/approach

This method uses the Levy method to obtain the initial parameters of the fitting model, uses the global optimization characteristics of the adaptive ant colony algorithm and the advantages of avoiding the “premature” phenomenon to optimize the initial parameters and finally obtains a small unmanned helicopter through computational optimization Kinetic models under lateral channel and longitudinal channel.

Findings

The algorithm is verified by flight test data. The verification results show that the established dynamic model has high identification accuracy and can accurately reflect the dynamic characteristics of small unmanned helicopter flight.

Originality/value

This paper presents a novel and improved frequency domain identification method for small unmanned helicopters. Compared with the conventional method, this method improves the identification accuracy and reduces the identification error.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 July 2024

Guilherme Fonseca Gonçalves, Rui Pedro Cardoso Coelho and Igor André Rodrigues Lopes

The purpose of this research is to establish a robust numerical framework for the calibration of macroscopic constitutive parameters, based on the analysis of polycrystalline RVEs…

Abstract

Purpose

The purpose of this research is to establish a robust numerical framework for the calibration of macroscopic constitutive parameters, based on the analysis of polycrystalline RVEs with computational homogenisation.

Design/methodology/approach

This framework is composed of four building-blocks: (1) the multi-scale model, consisting of polycrystalline RVEs, where the grains are modelled with anisotropic crystal plasticity, and computational homogenisation to link the scales, (2) a set of loading cases to generate the reference responses, (3) the von Mises elasto-plastic model to be calibrated, and (4) the optimisation algorithms to solve the inverse identification problem. Several optimisation algorithms are assessed through a reference identification problem. Thereafter, different calibration strategies are tested. The accuracy of the calibrated models is evaluated by comparing their results against an FE2 model and experimental data.

Findings

In the initial tests, the LIPO optimiser performs the best. Good results accuracy is obtained with the calibrated constitutive models. The computing time needed by the FE2 simulations is 5 orders of magnitude larger, compared to the standard macroscopic simulations, demonstrating how this framework is suitable to obtain efficient micro-mechanics-informed constitutive models.

Originality/value

This contribution proposes a numerical framework, based on FE2 and macro-scale single element simulations, where the calibration of constitutive laws is informed by multi-scale analysis. The most efficient combination of optimisation algorithm and definition of the objective function is studied, and the robustness of the proposed approach is demonstrated by validation with both numerical and experimental data.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 March 2023

Yixuan Li, Yanfeng Chen, Bo Zhang, Dongyuan Qiu, Fan Xie and Chao Cheng

The purpose of this paper is to find a simpler model for the reactance components in the high-frequency range on the premise of ensuring the accuracy.

Abstract

Purpose

The purpose of this paper is to find a simpler model for the reactance components in the high-frequency range on the premise of ensuring the accuracy.

Design/methodology/approach

In this paper, based on the fractional calculus theory and the traditional integer-order model, a reactance model suitable for high frequency is constructed, and the mutation cross differential evolution algorithm is used to identify the parameters in the model.

Findings

By comparing the integer-order model, high-frequency fractional-order model and the actual impedance characteristic curve of inductance and capacitance, it is verified that the proposed model can more accurately reflect the high-frequency characteristics of inductance and capacitance. The simulation and experimental results show that the oscillator constructed based on the proposed model can analyze the frequency and output waveform of the oscillator more accurately.

Originality/value

The model proposed in this paper has a simple structure and contains only two parameters to be identified. At the same time, the model has high precision. The fitting errors of impedance curve and phase-frequency characteristic curve are less than 5%. Therefore, the proposed model is helpful to improve the simplicity and accuracy of circuit system analysis and design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 October 2023

Jie Chu, Junhong Li, Yizhe Jiang, Weicheng Song and Tiancheng Zong

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical…

Abstract

Purpose

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical, aerospace and other fields. This paper considers the parameter estimation of the Wiener-Hammerstein output error moving average (OEMA) system.

Design/methodology/approach

The idea of multi-population and parameter self-adaptive identification is introduced, and a multi-population self-adaptive differential evolution (MPSADE) algorithm is proposed. In order to confirm the feasibility of the above method, the differential evolution (DE), the self-adaptive differential evolution (SADE), the MPSADE and the gradient iterative (GI) algorithms are derived to identify the Wiener-Hammerstein OEMA system, respectively.

Findings

From the simulation results, the authors find that the estimation errors under the four algorithms stabilize after 120, 30, 20 and 300 iterations, respectively, and the estimation errors of the four algorithms converge to 5.0%, 3.6%, 2.7% and 7.3%, which show that all four algorithms can identify the Wiener-Hammerstein OEMA system.

Originality/value

Compared with DE, SADE and GI algorithm, the MPSADE algorithm not only has higher parameter estimation accuracy but also has a faster convergence speed. Finally, the input–output relationship of laser welding system is described and identified by the MPSADE algorithm. The simulation results show that the MPSADE algorithm can effectively identify parameters of the laser welding system.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 September 2024

Bo Zhang, Xi Chen, Hanwen You, Hong Jin and Hongxiang Peng

Ultracapacitors find extensive applications in various fields because of their high energy density and long cycling periods. However, due to the movement of ions and the…

Abstract

Purpose

Ultracapacitors find extensive applications in various fields because of their high energy density and long cycling periods. However, due to the movement of ions and the arrangement patterns on rough/irregular electrode surfaces during the charge and discharge process of ultracapacitors, the parameters of ultracapacitors usually change with the variation of operating conditions. The purpose of this study is to accurately and quickly identify the parameters of ultracapacitors.

Design/methodology/approach

A variable forgetting factor recursive least square (VFFRLS) algorithm is proposed in this paper for online identifying the equivalent series resistance and capacitance C of ultracapacitors. In this work, a real-time error-based strategy is developed to adaptively regulate the value of the forgetting factor of traditional forgetting factor recursive least square (FFRLS) algorithm. The strategy uses the square of the average time autocorrelation estimation of the prior error and the posterior error between the predicted output and the actual output as the adjustment basis of forgetting factors.

Findings

Experiments were conducted using the proposed scheme, and the results were compared with the estimation results obtained by the recursive least squares (RLS) algorithm and the traditional FFRLS algorithm. The maximum root mean square error between the estimated values and actual values for VFFRLS is 3.63%, whereas for FFRLS it is 9.61%, and for RLS it is 19.33%.

Originality/value

By using the proposed VFFRLS algorithm, a relatively high precision can be achieved for the online parameter estimation of ultracapacitors. Besides, the dynamic balance between parameter stability and tracking performance can be validated by dynamically adjusting the forgetting factor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 January 2024

Siming Cao, Hongfeng Wang, Yingjie Guo, Weidong Zhu and Yinglin Ke

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance…

Abstract

Purpose

In a dual-robot system, the relative position error is a superposition of errors from each mono-robot, resulting in deteriorated coordination accuracy. This study aims to enhance relative accuracy of the dual-robot system through direct compensation of relative errors. To achieve this, a novel calibration-driven transfer learning method is proposed for relative error prediction in dual-robot systems.

Design/methodology/approach

A novel local product of exponential (POE) model with minimal parameters is proposed for error modeling. And a two-step method is presented to identify both geometric and nongeometric parameters for the mono-robots. Using the identified parameters, two calibrated models are established and combined as one dual-robot model, generating error data between the nominal and calibrated models’ outputs. Subsequently, the calibration-driven transfer, involving pretraining a neural network with sufficient generated error data and fine-tuning with a small measured data set, is introduced, enabling knowledge transfer and thereby obtaining a high-precision relative error predictor.

Findings

Experimental validation is conducted, and the results demonstrate that the proposed method has reduced the maximum and average relative errors by 45.1% and 30.6% compared with the calibrated model, yielding the values of 0.594 mm and 0.255 mm, respectively.

Originality/value

First, the proposed calibration-driven transfer method innovatively adopts the calibrated model as a data generator to address the issue of real data scarcity. It achieves high-accuracy relative error prediction with only a small measured data set, significantly enhancing error compensation efficiency. Second, the proposed local POE model achieves model minimality without the need for complex redundant parameter partitioning operations, ensuring stability and robustness in parameter identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 4000