Search results

1 – 10 of 48
Open Access
Article
Publication date: 14 July 2022

Karlo Puh and Marina Bagić Babac

As the tourism industry becomes more vital for the success of many economies around the world, the importance of technology in tourism grows daily. Alongside increasing tourism…

6066

Abstract

Purpose

As the tourism industry becomes more vital for the success of many economies around the world, the importance of technology in tourism grows daily. Alongside increasing tourism importance and popularity, the amount of significant data grows, too. On daily basis, millions of people write their opinions, suggestions and views about accommodation, services, and much more on various websites. Well-processed and filtered data can provide a lot of useful information that can be used for making tourists' experiences much better and help us decide when selecting a hotel or a restaurant. Thus, the purpose of this study is to explore machine and deep learning models for predicting sentiment and rating from tourist reviews.

Design/methodology/approach

This paper used machine learning models such as Naïve Bayes, support vector machines (SVM), convolutional neural network (CNN), long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM) for extracting sentiment and ratings from tourist reviews. These models were trained to classify reviews into positive, negative, or neutral sentiment, and into one to five grades or stars. Data used for training the models were gathered from TripAdvisor, the world's largest travel platform. The models based on multinomial Naïve Bayes (MNB) and SVM were trained using the term frequency-inverse document frequency (TF-IDF) for word representations while deep learning models were trained using global vectors (GloVe) for word representation. The results from testing these models are presented, compared and discussed.

Findings

The performance of machine and learning models achieved high accuracy in predicting positive, negative, or neutral sentiments and ratings from tourist reviews. The optimal model architecture for both classification tasks was a deep learning model based on BiLSTM. The study’s results confirmed that deep learning models are more efficient and accurate than machine learning algorithms.

Practical implications

The proposed models allow for forecasting the number of tourist arrivals and expenditure, gaining insights into the tourists' profiles, improving overall customer experience, and upgrading marketing strategies. Different service sectors can use the implemented models to get insights into customer satisfaction with the products and services as well as to predict the opinions given a particular context.

Originality/value

This study developed and compared different machine learning models for classifying customer reviews as positive, negative, or neutral, as well as predicting ratings with one to five stars based on a TripAdvisor hotel reviews dataset that contains 20,491 unique hotel reviews.

Details

Journal of Hospitality and Tourism Insights, vol. 6 no. 3
Type: Research Article
ISSN: 2514-9792

Keywords

Article
Publication date: 6 October 2023

Vahide Bulut

Feature extraction from 3D datasets is a current problem. Machine learning is an important tool for classification of complex 3D datasets. Machine learning classification…

Abstract

Purpose

Feature extraction from 3D datasets is a current problem. Machine learning is an important tool for classification of complex 3D datasets. Machine learning classification techniques are widely used in various fields, such as text classification, pattern recognition, medical disease analysis, etc. The aim of this study is to apply the most popular classification and regression methods to determine the best classification and regression method based on the geodesics.

Design/methodology/approach

The feature vector is determined by the unit normal vector and the unit principal vector at each point of the 3D surface along with the point coordinates themselves. Moreover, different examples are compared according to the classification methods in terms of accuracy and the regression algorithms in terms of R-squared value.

Findings

Several surface examples are analyzed for the feature vector using classification (31 methods) and regression (23 methods) machine learning algorithms. In addition, two ensemble methods XGBoost and LightGBM are used for classification and regression. Also, the scores for each surface example are compared.

Originality/value

To the best of the author’s knowledge, this is the first study to analyze datasets based on geodesics using machine learning algorithms for classification and regression.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2023

Rucha Wadapurkar, Sanket Bapat, Rupali Mahajan and Renu Vyas

Ovarian cancer (OC) is the most common type of gynecologic cancer in the world with a high rate of mortality. Due to manifestation of generic symptoms and absence of specific…

Abstract

Purpose

Ovarian cancer (OC) is the most common type of gynecologic cancer in the world with a high rate of mortality. Due to manifestation of generic symptoms and absence of specific biomarkers, OC is usually diagnosed at a late stage. Machine learning models can be employed to predict driver genes implicated in causative mutations.

Design/methodology/approach

In the present study, a comprehensive next generation sequencing (NGS) analysis of whole exome sequences of 47 OC patients was carried out to identify clinically significant mutations. Nine functional features of 708 mutations identified were input into a machine learning classification model by employing the eXtreme Gradient Boosting (XGBoost) classifier method for prediction of OC driver genes.

Findings

The XGBoost classifier model yielded a classification accuracy of 0.946, which was superior to that obtained by other classifiers such as decision tree, Naive Bayes, random forest and support vector machine. Further, an interaction network was generated to identify and establish correlations with cancer-associated pathways and gene ontology data.

Originality/value

The final results revealed 12 putative candidate cancer driver genes, namely LAMA3, LAMC3, COL6A1, COL5A1, COL2A1, UGT1A1, BDNF, ANK1, WNT10A, FZD4, PLEKHG5 and CYP2C9, that may have implications in clinical diagnosis.

Details

Data Technologies and Applications, vol. 58 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 25 September 2023

Xiao Yao, Dongxiao Wu, Zhiyong Li and Haoxiang Xu

Since stock return and volatility matters to investors, this study proposes to incorporate the textual sentiment of annual reports in stock price crash risk prediction.

Abstract

Purpose

Since stock return and volatility matters to investors, this study proposes to incorporate the textual sentiment of annual reports in stock price crash risk prediction.

Design/methodology/approach

Specific sentences gathered from management discussions and their subsequent analyses are tokenized and transformed into numeric vectors using textual mining techniques, and then the Naïve Bayes method is applied to score the sentiment, which is used as an input variable for crash risk prediction. The results are compared between a collection of predictive models, including linear regression (LR) and machine learning techniques.

Findings

The experimental results find that those predictive models that incorporate textual sentiment significantly outperform the baseline models with only accounting and market variables included. These conclusions hold when crash risk is proxied by either the negative skewness of the return distribution or down-to-up volatility (DUVOL).

Research limitations/implications

It should be noted that the authors' study focuses on examining the predictive power of textual sentiment in crash risk prediction, while other dimensions of textual features such as readability and thematic contents are not considered. More analysis is needed to explore the predictive power of textual features from various dimensions, with the most recent sample data included in future studies.

Originality/value

The authors' study provides implications for the information value of textual data in financial analysis and risk management. It suggests that the soft information contained within annual reports may prove informative in crash risk prediction, and the incorporation of textual sentiment provides an incremental improvement in overall predictive performance.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

Article
Publication date: 31 August 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault…

Abstract

Purpose

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge.

Design/methodology/approach

The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure.

Findings

The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability.

Originality/value

The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 February 2023

Meriem Laifa and Djamila Mohdeb

This study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian…

Abstract

Purpose

This study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian Arabic tweets related to early days of the Algerian SM, called Hirak.

Design/methodology/approach

Related tweets were retrieved using relevant hashtags followed by multiple data cleaning procedures. Foundational machine learning methods such as Naive Bayes, Support Vector Machine, Logistic Regression (LR) and Decision Tree were implemented. For each classifier, two feature extraction techniques were used and compared, namely Bag of Words and Term Frequency–Inverse Document Frequency. Moreover, three fine-tuned pretrained transformers AraBERT and DziriBERT and the multilingual transformer XLM-R were used for the comparison.

Findings

The findings of this paper emphasize the vital role social media played during the Hirak. Results revealed that most individuals had a positive attitude toward the Hirak. Moreover, the presented experiments provided important insights into the possible use of both basic machine learning and transfer learning models to analyze SA of Algerian text datasets. When comparing machine learning models with transformers in terms of accuracy, precision, recall and F1-score, the results are fairly similar, with LR outperforming all models with a 68 per cent accuracy rate.

Originality/value

At the time of writing, the Algerian SM was not thoroughly investigated or discussed in the Computer Science literature. This analysis makes a limited but unique contribution to understanding the Algerian Hirak using artificial intelligence. This study proposes what it considers to be a unique basis for comprehending this event with the goal of generating a foundation for future studies by comparing different SA techniques on a low-resource language.

Details

Data Technologies and Applications, vol. 57 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 2 January 2024

Xinyang Liu, Anyu Liu, Xiaoying Jiao and Zhen Liu

The purpose of the study is to investigate the impact of implementing anti-dumping duties on imported Australian wine to China in the short- and long-run, respectively.

222

Abstract

Purpose

The purpose of the study is to investigate the impact of implementing anti-dumping duties on imported Australian wine to China in the short- and long-run, respectively.

Design/methodology/approach

First, the Difference-in-Differences (DID) method is used in this study to evaluate the short-run causal effect of implementing anti-dumping duties on imported Australian wine to China. Second, a Bayesian ensemble method is used to predict 2023–2025 wine exports from Australia to China. The disparity between the forecasts and counterfactual prediction which assumes no anti-dumping duties represents the accumulated impact of the anti-dumping duties in the long run.

Findings

The anti-dumping duties resulted in a significant decline in red and rose, white and sparkling wine exports to China by 92.59%, 99.06% and 90.06%, respectively, in 2021. In the long run, wine exports to China are projected to continue this downward trend, with an average annual growth rate of −21.92%, −38.90% and −9.54% for the three types of wine, respectively. In contrast, the counterfactual prediction indicates an increase of 3.20%, 20.37% and 4.55% for the respective categories. Consequently, the policy intervention is expected to result in a decrease of 96.11%, 93.15% and 84.11% in red and rose, white and sparkling wine exports to China from 2021 to 2025.

Originality/value

The originality of this study lies in the creation of an economic paradigm for assessing policy impacts within the realm of wine economics. Methodologically, it also represents the pioneering application of the DID and Bayesian ensemble forecasting methods within the field of wine economics.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 22 March 2024

Mohd Mustaqeem, Suhel Mustajab and Mahfooz Alam

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have…

Abstract

Purpose

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have proposed a novel hybrid approach that combines Gray Wolf Optimization with Feature Selection (GWOFS) and multilayer perceptron (MLP) for SDP. The GWOFS-MLP hybrid model is designed to optimize feature selection, ultimately enhancing the accuracy and efficiency of SDP. Gray Wolf Optimization, inspired by the social hierarchy and hunting behavior of gray wolves, is employed to select a subset of relevant features from an extensive pool of potential predictors. This study investigates the key challenges that traditional SDP approaches encounter and proposes promising solutions to overcome time complexity and the curse of the dimensionality reduction problem.

Design/methodology/approach

The integration of GWOFS and MLP results in a robust hybrid model that can adapt to diverse software datasets. This feature selection process harnesses the cooperative hunting behavior of wolves, allowing for the exploration of critical feature combinations. The selected features are then fed into an MLP, a powerful artificial neural network (ANN) known for its capability to learn intricate patterns within software metrics. MLP serves as the predictive engine, utilizing the curated feature set to model and classify software defects accurately.

Findings

The performance evaluation of the GWOFS-MLP hybrid model on a real-world software defect dataset demonstrates its effectiveness. The model achieves a remarkable training accuracy of 97.69% and a testing accuracy of 97.99%. Additionally, the receiver operating characteristic area under the curve (ROC-AUC) score of 0.89 highlights the model’s ability to discriminate between defective and defect-free software components.

Originality/value

Experimental implementations using machine learning-based techniques with feature reduction are conducted to validate the proposed solutions. The goal is to enhance SDP’s accuracy, relevance and efficiency, ultimately improving software quality assurance processes. The confusion matrix further illustrates the model’s performance, with only a small number of false positives and false negatives.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 6 February 2023

Marko Kureljusic and Jonas Metz

The accurate prediction of incoming cash flows enables more effective cash management and allows firms to shape firms' planning based on forward-looking information. Although most…

Abstract

Purpose

The accurate prediction of incoming cash flows enables more effective cash management and allows firms to shape firms' planning based on forward-looking information. Although most firms are aware of the benefits of these forecasts, many still have difficulties identifying and implementing an appropriate prediction model. With the rise of machine learning algorithms, numerous new forecasting techniques have emerged. These new forecasting techniques are theoretically applicable for predicting customer payment behavior but have not yet been adequately investigated. This study aims to close this research gap by examining which machine learning algorithm is the most appropriate for predicting customer payment dates.

Design/methodology/approach

By using various machine learning algorithms, the authors evaluate whether customer payment behavior patterns can be identified and predicted. The study is based on real-world transaction data from a DAX-40 firm with over 1,000,000 invoices in the dataset, with the data covering the period 2017–2019.

Findings

The authors' results show that neural networks in particular are suitable for predicting customers' payment dates. Furthermore, the authors demonstrate that contextual and logical prediction models can provide more accurate forecasts than conventional baseline models, such as linear and multivariate regression.

Research limitations/implications

Future cash flow forecasting studies should incorporate naïve prediction models, as the authors demonstrate that these models can compete with conventional baseline models used in existing machine learning research. However, the authors expect that with more in-depth information about the customer (creditworthiness, accounting structure) the results can be even further improved.

Practical implications

The knowledge of customers' future payment dates enables firms to change their perspective and move from reactive to proactive cash management. This shift leads to a more targeted dunning process.

Originality/value

To the best of the authors' knowledge, no study has yet been conducted that interprets the prediction of incoming payments as a daily rolling forecast by comparing naïve forecasts with forecasts based on machine learning and deep learning models.

Details

Journal of Applied Accounting Research, vol. 24 no. 4
Type: Research Article
ISSN: 0967-5426

Keywords

Article
Publication date: 26 January 2022

Rajashekhar U., Neelappa and Harish H.M.

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation…

Abstract

Purpose

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation system was created that integrated natural interaction assisted by electroencephalogram (EEG), which enabled the movements in the virtual environment and real wheelchair. For blind wheelchair operator patients, this paper involved of expounding the proper methodology. For educating the value of life and independence of blind wheelchair users, outcomes have proven that virtual reality (VR) with EEG signals has that potential.

Design/methodology/approach

Individuals face numerous challenges with many disorders, particularly when multiple dysfunctions are diagnosed and especially for visually effected wheelchair users. This scenario, in reality, creates in a degree of incapacity on the part of the wheelchair user in terms of performing simple activities. Based on their specific medical needs, confined patients are treated in a modified method. Independent navigation is secured for individuals with vision and motor disabilities. There is a necessity for communication which justifies the use of VR in this navigation situation. For the effective integration of locomotion besides, it must be under natural guidance. EEG, which uses random brain impulses, has made significant progress in the field of health. The custom of an automated audio announcement system modified to have the help of VR and EEG for the training of locomotion and individualized interaction of wheelchair users with visual disability is demonstrated in this study through an experiment. Enabling the patients who were otherwise deemed incapacitated to participate in social activities, as the aim was to have efficient connections.

Findings

To protect their life straightaway and to report all these disputes, the military system should have high speed, more precise portable prototype device for nursing the soldier health, recognition of solider location and report about health sharing system to the concerned system. Field programmable gate array (FPGA)-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals, the soldier’s health is observed on systematic bases. By emerging Verilog hardware description language (HDL) programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t the whole work is approved in a Vivado Design Suite. Classification of different abnormalities and cloud storage of EEG along with the type of abnormalities, artifact elimination, abnormalities identification based on feature extraction, exist in the segment of suggested architecture. Irregularity circumstances are noticed through developed prototype system and alert the physically challenged (PHC) individual via an audio announcement. An actual method for eradicating motion artifacts from EEG signals that have anomalies in the PHC person’s brain has been established, and the established system is a portable device that can deliver differences in brain signal variation intensity. Primarily the EEG signals can be taken and the undesirable artifact can be detached, later structures can be mined by discrete wavelet transform these are the two stages through which artifact deletion can be completed. The anomalies in signal can be noticed and recognized by using machine learning algorithms known as multirate support vector machine classifiers when the features have been extracted using a combination of hidden Markov model (HMM) and Gaussian mixture model (GMM). Intended for capable declaration about action taken by a blind person, these result signals are protected in storage devices and conveyed to the controller. Pretending daily motion schedules allows the pretentious EEG signals to be caught. Aimed at the validation of planned system, the database can be used and continued with numerous recorded signals of EEG. The projected strategy executes better in terms of re-storing theta, delta, alpha and beta complexes of the original EEG with less alteration and a higher signal to noise ratio (SNR) value of the EEG signal, which illustrates in the quantitative analysis. The projected method used Verilog HDL and MATLAB software for both formation and authorization of results to yield improved results. Since from the achieved results, it is initiated that 32% enhancement in SNR, 14% in mean squared error (MSE) and 65% enhancement in recognition of anomalies, hence design is effectively certified and proved for standard EEG signals data sets on FPGA.

Originality/value

The proposed system can be used in military applications as it is high speed and excellent precise in terms of identification of abnormality, the developed system is portable and very precise. FPGA-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals the soldier health is observed in systematic bases. The proposed system is developed using Verilog HDL programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t and synthesised using in Vivado Design Suite software tool.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 48