Search results

1 – 4 of 4
Article
Publication date: 26 June 2019

Nguyen Ngoc Son, Cao Van Kien and Ho Pham Huy Anh

This paper aims to propose an advanced tracking control of the uncertain nonlinear dynamic system using a novel hybrid fuzzy linear quadratic regulator…

146

Abstract

Purpose

This paper aims to propose an advanced tracking control of the uncertain nonlinear dynamic system using a novel hybrid fuzzy linear quadratic regulator (LQR)-proportional-integral-derivative (PID) sliding mode control (SMC) optimized by differential evolution (DE) algorithm.

Design/methodology/approach

First, a swing-up and balancing control is presented for an experimental uncertain nonlinear Pendubot system perturbed with friction. The DE-based optimal SMC scheme is used to optimally swing up the Pendubot system to the top equilibrium position. Then the novel hybrid fuzzy-based on LQR fusion function and PID controller optimized by DE algorithm is innovatively applied for balancing and control the position of the first link of the Pendubot in the down-right position with tracking sinusoidal signal reference.

Findings

Experimental results demonstrate the robustness and effectiveness of the proposed approach in balancing control for an uncertain nonlinear Pendubot system perturbed with internal friction.

Originality/value

This manuscript is an original research paper and has never been submitted to any other journal.

Article
Publication date: 18 October 2021

Zafer Bingul and Oguzhan Karahan

The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and…

Abstract

Purpose

The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and robustness against to different reference trajectories of a 6-DOF Stewart Platform (SP) in joint space.

Design/methodology/approach

For the optimal design of the proposed control approach, tuning of the controller parameters including membership functions and input-output scaling factors along with the fractional order rate of error and fractional order integral of control signal is tuned with off-line by using particle swarm optimization (PSO) algorithm. For achieving this off-line optimization in the simulation environment, very accurate dynamic model of SP which has more complicated dynamical characteristics is required. Therefore, the coupling dynamic model of multi-rigid-body system is developed by Lagrange-Euler approach. For completeness, the mathematical model of the actuators is established and integrated with the dynamic model of SP mechanical system to state electromechanical coupling dynamic model. To study the validness of the proposed FOFPID controller, using this accurate dynamic model of the SP, other published control approaches such as the PID control, FOPID control and fuzzy PID control are also optimized with PSO in simulation environment. To compare trajectory tracking performance and effectiveness of the tuned controllers, the real time validation trajectory tracking experiments are conducted using the experimental setup of the SP by applying the optimum parameters of the controllers. The credibility of the results obtained with the controllers tuned in simulation environment is examined using statistical analysis.

Findings

The experimental results clearly demonstrate that the proposed optimal FOFPID controller can improve the control performance and reduce reference trajectory tracking errors of the SP. Also, the proposed PSO optimized FOFPID control strategy outperforms other control schemes in terms of the different difficulty levels of the given trajectories.

Originality/value

To the best of the authors’ knowledge, such a motion controller incorporating the fractional order approach to the fuzzy is first time applied in trajectory tracking control of SP.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 May 2015

Piotr Derugo and Krzysztof Szabat

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence…

2521

Abstract

Purpose

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence better quality of products. As it may seem that everything in the classical systems has already been discovered, more and more research centres are tending to incorporate fuzzy or neural control systems. The purpose of this paper is to present an application of the adaptive neuro-fuzzy PID speed controller for a DC drive system with a complex nonlinear mechanical part.

Design/methodology/approach

The model of the driven object including such elements as nonlinear shaft with backlash and friction has been modelled using Matlab-Simulink software. Afterwards experimental verification has been made using a dSPACE control card and experimental system with two DC motors connected with an elastic shaft.

Findings

The presented study shown that the adaptive controller is able to damp the torsional vibration effectively even for the wide range of the system nonlinearities. What is more the design approach for controllers design parameters has been described. Proposed approach is based on requested properties of system. Using proposed tuning scheme no detailed information about the object are needed.

Originality/value

This paper presents for the first time fully an PID adaptive neuro-fuzzy controller. The inputs are the weighted tracking error, error’s derivative and integrated error. What is more the adaptation algorithm consists of a model tracking error its derivative and integer. Also the proposed tuning algorithm in such a form is an original outcome.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 4 of 4