Search results

1 – 10 of 222
Article
Publication date: 20 October 2023

Sapna Pandit, Pooja Verma, Manoj Kumar and Poonam

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential…

Abstract

Purpose

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential quadrature method (LRBF-DQM) to simulate the multidimensional hyperbolic wave models and work is an extension of Jiwari (2015).

Design/methodology/approach

In the evolvement of the first algorithm, the time derivative is discretized by the forward FD scheme and the Crank-Nicolson scheme is used for the rest of the terms. After that, the LRBF-FD approximation is used for spatial discretization and quasi-linearization process for linearization of the problem. Finally, the obtained linear system is solved by the LU decomposition method. In the development of the second algorithm, semi-discretization in space is done via LRBF-DQM and then an explicit RK4 is used for fully discretization in time.

Findings

For simulation purposes, some 1D and 2D wave models are pondered to instigate the chastity and competence of the developed algorithms.

Originality/value

The developed algorithms are novel for the multidimensional hyperbolic wave models. Also, the stability analysis of the second algorithm is a new work for these types of model.

Article
Publication date: 16 February 2024

Muhammad Faisal, F. Mabood, I.A. Badruddin, Muhammad Aiyaz and Faisal Mehmood Butt

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering…

17

Abstract

Purpose

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.

Design/methodology/approach

Suitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.

Findings

It is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 September 2023

Deepak Kumar Prajapati, Jitendra Kumar Katiyar and Chander Prakash

This study aims to use a machine learning (ML) model for the prediction of traction coefficient and asperity load ratio for different surface topographies of non-conformal rough…

Abstract

Purpose

This study aims to use a machine learning (ML) model for the prediction of traction coefficient and asperity load ratio for different surface topographies of non-conformal rough contacts.

Design/methodology/approach

The input data set for the ML model is generated using a mixed-lubrication model. Surface topography parameters (skewness, kurtosis and pattern ratio), rolling speed and hardness are used as input features in the multi-layer perceptron (MLP) model. The hyperparameter tuning and fivefold cross-validation are also performed to minimize the overfitting.

Findings

From the results, it is shown that the MLP model shows excellent accuracy (R2 > 90%) on the test data set for making the prediction of mixed lubrication parameters. It is also observed that engineered rough surfaces with high negative skewness, low kurtosis and isotropic surface patterns exhibit a significant low traction coefficient. It is also concluded that the MLP model gives better accuracy in comparison to the random forest regression model based on the training and testing data sets.

Originality/value

Mixed lubrication parameters are predicted by developing a regression-based MLP model. The machine learning model is trained using several topography parameters, which are vital in the mixed-EHL regime because of the lack of regression-fit expressions in previous works. The accuracy of MLP with random forest models is also compared.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 September 2023

Nurul Amira Zainal, Najiyah Safwa Khashi'ie, Iskandar Waini, Abdul Rahman Mohd Kasim, Roslinda Nazar and Ioan Pop

The evaluation of high thermal efficiency has actively highlighted the unique behaviour of hybrid nanofluid. Thus, the purpose of this paper is to emphasize the hybrid nanofluid’s…

Abstract

Purpose

The evaluation of high thermal efficiency has actively highlighted the unique behaviour of hybrid nanofluid. Thus, the purpose of this paper is to emphasize the hybrid nanofluid’s stagnation point in three-dimensional flow with magnetic field.

Design/methodology/approach

The defined ordinary differential equations systems are addressed using the bvp4c solver.

Findings

The results indicate that using dual solutions is possible as long as the physical parameters remain within their specified ranges. Hybrid nanofluid flow has been recognised for its superior heat transfer capabilities in comparison to both viscous flow and nanofluid flow. Furthermore, it has been demonstrated in the current study that augmenting the volume concentration of nanoparticles leads to a corresponding enhancement in the rate of heat transfer. When the velocity gradients ratio is augmented, there is a corresponding reduction in the thermal performance. The separation value grows as the magnetic parameter rises, which signifies the expansion of the boundary layer.

Originality/value

The originality of the paper highlights the general mathematical hybrid model of the three-dimensional problem with the magnetohydrodynamics (MHD) effect in the stagnation point flow. The comprehensive examination of the suggested model has not yet been thoroughly addressed in prior research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2117

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 28 July 2023

Amit Kumar, Abhipsa P. Dash, Atul Kumar Ray, Priyabrata Sethy and Idamakanti Kasireddy

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different…

Abstract

Purpose

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different shapes of nanoparticles (copper [Cu] and aluminium oxide [Al2O3]) in the base fluid (water [H2O]). The influence of different shapes (sphere, brick, cylinder, platelets and blades) of nanoparticle in water-based hybrid nanofluid is also investigated.

Design/methodology/approach

To analyse the nanomaterial, the flow model is established, and in doing so, the Prandtl’s boundary layer theory is incorporated into the present model. The bvp4c approach, i.e. finite difference method, is used to find the numerical solution of differential equations that is controlling the fluid flow. The effect of relevant flow parameters on nanofluid temperature and velocity profile is demonstrated in detailed explanations using graphs and bar charts, whereas numerical results for Nusselt number and the skin’s coefficient for various form parameters are presented in tabular form.

Findings

The rate of heat transfer is least for spherical-shaped nanoparticle because of its smoothness, symmetricity and isotropic behaviour. The rate of heat transfer is highest for blade-shaped nanoparticles as compared to other shapes (brick, cylindrical and platelet) of nanoparticles because the blade-shaped nanoparticles causes comparatively more turbulence flow in the nanofluid than other shapes of nanoparticle. Heat generation affects the temperature distribution and, hence, the particle deposition rate. The absorption of heat extracts heat and reduce the temperature across the rotating sphere. The heat generation/absorption parameter plays an important role in establishing and maintaining the temperature around the rotating sphere.

Research limitations/implications

The numerical study is valid with the exception of the fluctuation in density that results in the buoyancy force and the functional axisymmetric nanofluid transport has constant thermophysical characteristics. In addition, this investigation is also constrained by the assumptions that there is no viscosity dissipation, no surface slippage and no chemically activated species. The hybrid nanofluid Al2O3–Cu/H2O is an incompressible and diluted suspension. The single-phase hybrid nanofluid model is considered in which the relative velocity of water (H2O) and hybrid nanoparticles (Al2O3–Cu) is the same and they are in a state of thermal equilibrium.

Practical implications

Study on convective flow across a revolving sphere has its applications found in electrolysis management, polymer deposition, medication transfer, cooling of spinning machinery segments, spin-stabilized missiles and other industrial and technical applications.

Originality/value

The originality of the study is to investigate the effect of shape factor on the flow of electrically conducting hybrid nanofluid past a rotating sphere with heat generation/absorption and magnetic field. The results are validated and provide extremely positive balance with the recognised articles. The results of the study provide many appealing applications that merit further study of the problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 6 June 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Fabrizio Marignetti and Pierluigi Siano

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as…

Abstract

Purpose

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion). The dynamic model of VSI-PMSMs is multivariable and exhibits complicated nonlinear dynamics. The inverters’ currents, which are generated through a pulsewidth modulation process, are used to control the stator currents of the PMSM, which in turn control the rotational speed of this electric machine. So far, several nonlinear control schemes for VSI-PMSMs have been developed, having as primary objectives the precise tracking of setpoints by the system’s state variables and robustness to parametric changes or external perturbations. However, little has been done for the solution of the associated nonlinear optimal control problem. The purpose of this study/paper is to provide a novel nonlinear optimal control method for VSI-fed three-phase PMSMs.

Design/methodology/approach

The present article proposes a nonlinear optimal control approach for VSI-PMSMs. The nonlinear dynamic model of VSI-PMSMs undergoes approximate linearization around a temporary operating point, which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the voltage source inverter-fed PMSM state vector and by the last sampled value of the motor’s control input vector. The linearization relies on Taylor series expansion and the calculation of the system’s Jacobian matrices. For the approximately linearized model of the voltage source inverter-fed PMSM, an H-infinity feedback controller is designed. For the computation of the controller’s feedback gains, an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system, the H-infinity Kalman filter is proposed as a state observer. The proposed control method achieves fast and accurate tracking of the reference setpoints of the VSI-fed PMSM under moderate variations of the control inputs.

Findings

The proposed H-infinity controller provides the solution to the optimal control problem for the VSI-PMSM system under model uncertainty and external perturbations. Actually, this controller represents a min–max differential game taking place between the control inputs, which try to minimize a cost function that contains a quadratic term of the state vector’s tracking error, the model uncertainty, and exogenous disturbance terms, which try to maximize this cost function. To select the feedback gains of the stabilizing feedback controller, an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. To analyze the stability properties of the control scheme, the Lyapunov method is used. It is proven that the VSI-PMSM loop has the H-infinity tracking performance property, which signifies robustness against model uncertainty and disturbances. Moreover, under moderate conditions, the global asymptotic stability properties of this control scheme are proven. The proposed control method achieves fast tracking of reference setpoints by the VSI-PMSM state variables, while keeping also moderate the variations of the control inputs. The latter property indicates that energy consumption by the VSI-PMSM control loop can be minimized.

Practical implications

The proposed nonlinear optimal control method for the VSI-PMSM system exhibits several advantages: Comparing to global linearization-based control methods, such as Lie algebra-based control or differential flatness theory-based control, the nonlinear optimal control scheme avoids complicated state variable transformations (diffeomorphisms). Besides, its control inputs are applied directly to the initial nonlinear model of the VSI-PMSM system, and thus inverse transformations and the related singularity problems are also avoided. Compared with backstepping control, the nonlinear optimal control scheme does not require the state-space description of the controlled system to be found in the triangular (backstepping integral) form. Compared with sliding-mode control, there is no need to define in an often intuitive manner the sliding surfaces of the controlled system. Finally, compared with local model-based control, the article’s nonlinear optimal control method avoids linearization around multiple operating points and does not need the solution of multiple Riccati equations or LMIs. As a result of this, the nonlinear optimal control method requires less computational effort.

Social implications

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion), The solution of the associated nonlinear control problem enables reliable and precise functioning of VSI-fd PMSMs. This in turn has a positive impact in all related industrial applications and in tasks of electric traction and propulsion where VSI-fed PMSMs are used. It is particularly important for electric transportation systems and for the wide use of electric vehicles as expected by green policies which aim at deploying electromotion and at achieving the Net Zero objective.

Originality/value

Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system’s state vector and by the last sampled value of the control input vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation, which is used for computing the feedback gains of the controller, is new, as is the global stability proof for this control method. Comparing with nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems that can be transformed to the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2024

Gerasimos G. Rigatos, Pierluigi Siano, Mohammed S. Al-Numay, Bilal Sari and Masoud Abbaszadeh

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet…

Abstract

Purpose

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet synchronous motors and five-phase asynchronous induction motors (IMs) are among the types of multiphase motors one can consider for the traction system of electric vehicles (EVs). By distributing the required power in a large number of phases, the power load of each individual phase is reduced. The cumulative rates of power in multiphase machines can be raised without stressing the connected converters. Multiphase motors are also fault tolerant because such machines remain functional even if failures affect certain phases.

Design/methodology/approach

A novel nonlinear optimal control approach has been developed for five-phase IMs. The dynamic model of the five-phase IM undergoes approximate linearization using Taylor series expansion and the computation of the associated Jacobian matrices. The linearization takes place at each sampling instance. For the linearized model of the motor, an H-infinity feedback controller is designed. This controller achieves the solution of the optimal control problem under model uncertainty and disturbances.

Findings

To select the feedback gains of the nonlinear optimal (H-infinity) controller, an algebraic Riccati equation has to be solved repetitively at each time-step of the control method. The global stability properties of the control loop are demonstrated through Lyapunov analysis. Under moderate conditions, the global asymptotic stability properties of the control scheme are proven. The proposed nonlinear optimal control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs.

Research limitations/implications

Comparing to other nonlinear control methods that one could have considered for five-phase IMs, the presented nonlinear optimal (H-infinity) control approach avoids complicated state-space model transformations, is of proven global stability and its use does not require the model of the motor to be brought into a specific state-space form. The nonlinear optimal control method has clear implementation stages and moderate computational effort.

Practical implications

In the transportation sector, there is progressive transition to EVs. The use of five-phase IMs in EVs exhibits specific advantages, by achieving a more balanced distribution of power in the multiple phases of the motor and by providing fault tolerance. The study’s nonlinear optimal control method for five-phase IMs enables high performance for such motors and their efficient use in the traction system of EVs.

Social implications

Nonlinear optimal control for five-phase IMs supports the deployment of their use in EVs. Therefore, it contributes to the net-zero objective that aims at eliminating the emission of harmful exhaust gases coming from human activities. Most known manufacturers of vehicles have shifted to the production of all-electric cars. The study’s findings can optimize the traction system of EVs thus also contributing to the growth of the EV industry.

Originality/value

The proposed nonlinear optimal control method is novel comparing to past attempts for solving the optimal control problem for nonlinear dynamical systems. It uses a novel approach for selecting the linearization points and a new Riccati equation for computing the feedback gains of the controller. The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2023

Maryam Mohseni and Davood Rostamy

The numerical methods are of great importance for approximating the solutions of a system of nonlinear singular ordinary differential equations. In this paper, the authors present…

Abstract

Purpose

The numerical methods are of great importance for approximating the solutions of a system of nonlinear singular ordinary differential equations. In this paper, the authors present the biorthogonal flatlet multiwavelet collocation method (BFMCM) as a numerical scheme for a class of system of Lane–Emden equations with initial or boundary or four-point boundary conditions.

Design/methodology/approach

The approach is involved in combining the biorthogonal flatlet multiwavelet (BFM) with the collocation method. The authors investigate the properties and procedure of the BFMCM for first time on this class of equations. By using the BFM and the collocation points, the method is constructed and it transforms the nonlinear differential equations problem into a system of nonlinear algebraic equations. The unknown coefficients of the assuming solution are determined by solving the obtained system. Additionally, convergence analysis and numerical stability of the suggested method are provided.

Findings

According to the attained results, the proposed BFMCM has more accurate results in comparison with results of other methods. The maximum absolute errors are calculated by using the BFMCM for comparison purposes provided.

Originality/value

The key desirable properties of BFMCM are its efficiency, simple applicability and minimizes errors. Therefore, the proposed method can be used to solve nonlinear problems or problems with singular points.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Year

Last 6 months (222)

Content type

Article (222)
1 – 10 of 222