Search results

1 – 10 of 146
Content available
Article
Publication date: 1 April 1999

56

Abstract

Details

Industrial Robot: An International Journal, vol. 26 no. 3
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 4 November 2014

Mohammad Mehdi Fateh and Ali Asghar Arab

The uncertainty and nonlinearity are the challenging problems for the control of a nonholonomic wheeled mobile robot. To overcome these problems, many valuable methods have been…

Abstract

Purpose

The uncertainty and nonlinearity are the challenging problems for the control of a nonholonomic wheeled mobile robot. To overcome these problems, many valuable methods have been proposed by using two control loops namely the kinematic control and the torque control so far. In majority of the proposed approaches the dynamics of actuators is omitted for simplicity in the control design. This drawback degrades the control performance in high-velocity tracking control. On the other hand, to guarantee stability and overcome uncertainties, the control methods become computationally extensive and may be impractical due to using all states. The purpose of this paper is to design a simple controller with guaranteed stability for overcoming the nonlinearity, uncertainty and actuator dynamics.

Design/methodology/approach

The control design includes two control loops, the kinematic control loop and the novel dynamic control loop. The dynamic control loop uses the voltage control strategy instead of the torque control strategy. Feedbacks of the robot orientation, robot position, robot linear and angular velocity, and motor currents are given to the control system.

Findings

To improve the precision, the dynamics of motors are taken into account. The most important advantages of the proposed control law is that it is free from the robot dynamics, thereby the controller is simple, fast response and robust with ignorable tracking error. The control approach is verified by stability analysis. Simulation results show the effectiveness of the proposed control applied on an uncertain nonholonomic wheeled mobile robot driven by permanent magnet dc motors. A comparison with an adaptive sliding-mode dynamic control approach confirms the superiority of the proposed approach in terms of precision, simplicity of design and computations.

Originality/value

The originality of the paper is to present a new control design for an uncertain nonholonomic wheeled mobile robot by using voltage control strategy in replace of the torque control strategy. In addition, a novel state-space model of electrically driven nonholonomic wheeled mobile robot in the workspace is presented.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 August 2018

Hua Chen, Lei Chen, Qian Zhang and Fei Tong

The finite-time visual servoing control problem is considered for dynamic wheeled mobile robots (WMRs) with unknown control direction and external disturbance.

Abstract

Purpose

The finite-time visual servoing control problem is considered for dynamic wheeled mobile robots (WMRs) with unknown control direction and external disturbance.

Design/methodology/approach

By using finite-time control method and switching design technique.

Findings

First, the visual servoing kinematic WMR model is developed, which can be converted to the dynamic chained-form systems by using a state and input feedback transformation. Then, for two decoupled subsystems of the chained-form systems, according to the finite-time stability control theory, a discontinuous three-step switching control strategy is proposed in the presence of uncertain control coefficients and external disturbance.

Originality/value

A class of discontinuous anti-interference control method has been presented for the dynamic nonholonomic systems.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 27 August 2024

Willy John Nakamura Goto, Douglas Wildgrube Bertol and Nardênio Almeida Martins

This paper aims to propose a robust kinematic controller based on sliding mode theory designed to solve the trajectory tracking problem and also the formation control using the…

Abstract

Purpose

This paper aims to propose a robust kinematic controller based on sliding mode theory designed to solve the trajectory tracking problem and also the formation control using the leader–follower strategy for nonholonomic differential-drive wheeled mobile robots with a PD dynamic controller.

Design/methodology/approach

To deal with classical sliding mode control shortcomings, such as the chattering and the requirement of a priori knowledge of the limits of the effects of disturbances, an immune regulation mechanism-inspired approach is proposed to adjust the control effort magnitude adaptively. A simple fuzzy boundary layer method and an adaptation law for the immune portion gain online adjustment are also considered. An obstacle avoidance reactive strategy is proposed for the leader robot, given the importance of the leader in the formation control structure.

Findings

To verify the adaptability of the controller, obstacles are distributed along the reference trajectory, and the simulation and experimental results show the effectiveness of the proposed controller, which was capable of generating control signals avoiding chattering, compensating for disturbances and avoiding the obstacles.

Originality/value

The proposed design stands out for the ability to adapt in a case involving obstacle avoidance, trajectory tracking and leader–follower formation control by nonholonomic robots under the incidence of uncertainties and disturbances and also considering that the immune-based control provided chattering mitigation by adjusting the magnitude of the control effort, with adaptability improved by a simple integral-type adaptive law derived by Lyapunov stability analysis.

Article
Publication date: 13 December 2017

Ali Alouache and Qinghe Wu

The aim of this paper is to propose a robust robot fuzzy logic proportional-derivative (PD) controller for trajectory tracking of autonomous nonholonomic differential drive…

Abstract

Purpose

The aim of this paper is to propose a robust robot fuzzy logic proportional-derivative (PD) controller for trajectory tracking of autonomous nonholonomic differential drive wheeled mobile robot (WMR) of the type Quanser Qbot.

Design/methodology/approach

Fuzzy robot control approach is used for developing a robust fuzzy PD controller for trajectory tracking of a nonholonomic differential drive WMR. The linear/angular velocity of the differential drive mobile robot are formulated such that the tracking errors between the robot’s trajectory and the reference path converge asymptotically to zero. Here, a new controller zero-order Takagy–Sugeno trajectory tracking (ZTS-TT) controller is deduced for robot’s speed regulation based on the fuzzy PD controller. The WMR used for the experimental implementation is Quanser Qbot which has two differential drive wheels; therefore, the right/left wheel velocity of the differential wheels of the robot are worked out using inverse kinematics model. The controller is implemented using MATLAB Simulink with QUARC framework, downloaded and compiled into executable (.exe) on the robot based on the WIFI TCP/IP connection.

Findings

Compared to other fuzzy proportional-integral-derivative (PID) controllers, the proposed fuzzy PD controller was found to be robust, stable and consuming less resources on the robot. The comparative results of the proposed ZTS-TT controller and the conventional PD controller demonstrated clearly that the proposed ZTS-TT controller provides better tracking performances, flexibility, robustness and stability for the WMR.

Practical implications

The proposed fuzzy PD controller can be improved using hybrid techniques. The proposed approach can be developed for obstacle detection and collision avoidance in combination with trajectory tracking for use in environments with obstacles.

Originality/value

A robust fuzzy logic PD is developed and its performances are compared to the existing fuzzy PID controller. A ZTS-TT controller is deduced for trajectory tracking of an autonomous nonholonomic differential drive mobile robot (i.e. Quanser Qbot).

Details

Industrial Robot: An International Journal, vol. 45 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2017

Chao Ma

The purpose of this paper is to design a new compliant motion/force control strategy for robotic manipulators with environmental constraints in the sense of fixed-time stability.

Abstract

Purpose

The purpose of this paper is to design a new compliant motion/force control strategy for robotic manipulators with environmental constraints in the sense of fixed-time stability.

Design/methodology/approach

This paper investigates a novel compliant motion/force control strategy for robotic manipulators with environmental constraints. By using the Lyapunov theory and fixed-time stability theory, a non-singular terminal sliding mode manifold is first established. Then, the compliant motion/force controller is designed, and relevant conditions are given for guaranteeing that the robotic manipulator can track the prescribed constrained trajectory while exerting a desired force to the environment in fixed-time. An illustrative example is presented to show the effectiveness of our proposed control strategy.

Findings

Based on fixed-time stability theory, the desired compliant motion/force controller for robotic manipulators with environmental constraints is developed.

Originality/value

Compared with most existing literature, the proposed fixed-time compliant motion/force control strategy can provide the upper bound of the settling time independent of the initial conditions in designing procedure and is more practical for the real-world applications.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 27 April 2012

Yaonan Wang and Xiru Wu

The purpose of this paper is to present the radial basis function (RBF) networks‐based adaptive robust control for an omni‐directional wheeled mobile manipulator in the presence…

Abstract

Purpose

The purpose of this paper is to present the radial basis function (RBF) networks‐based adaptive robust control for an omni‐directional wheeled mobile manipulator in the presence of uncertainties and disturbances.

Design/methodology/approach

First, a dynamic model is obtained based on the practical omni‐directional wheeled mobile manipulator system. Second, the RBF neural network is used to identify the unstructured system dynamics directly due to its ability to approximate a nonlinear continuous function to arbitrary accuracy. Using the learning ability of neural networks, RBFNARC can co‐ordinately control the omni‐directional mobile platform and the mounted manipulator with different dynamics efficiently. The implementation of the control algorithm is dependent on the sliding mode control.

Findings

Based on the Lyapunov stability theory, the stability of the whole control system, the boundedness of the neural networks weight estimation errors, and the uniformly ultimate boundedness of the tracking error are all strictly guaranteed.

Originality/value

In this paper, an adaptive robust control scheme using neural networks combined with sliding mode control is proposed for crawler‐type mobile manipulators in the presence of uncertainties and disturbances. RBF neural networks approximate the system dynamics directly and overcome the structured uncertainty by learning. Based on the Lyapunov stability theory, the stability of the whole control system, the boundedness of the neural networks weight estimation errors, and the uniformly ultimate boundedness of the tracking error are all strictly guaranteed.

Article
Publication date: 7 July 2020

Jiehao Li, Junzheng Wang, Shoukun Wang, Hui Peng, Bomeng Wang, Wen Qi, Longbin Zhang and Hang Su

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory…

Abstract

Purpose

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory tracking and stable operation with heavy load are the main challenges of parallel mechanism for wheel-legged robots, especially in complex road conditions. To guarantee the tracking performance in an uncertain environment, the disturbances, including the internal friction, external environment interaction, should be considered in the practical robot system.

Design/methodology/approach

In this paper, a fuzzy approximation-based model predictive tracking scheme (FMPC) for reliable tracking control is developed to the six wheel-legged robot, in which the fuzzy logic approximation is applied to estimate the uncertain physical interaction and external dynamics of the robot system. Meanwhile, the advanced parallel mechanism of the electric six wheel-legged robot (BIT-NAZA) is presented.

Findings

Co-simulation and comparative experimental results using the BIT-NAZA robot derived from the developed hybrid control scheme indicate that the methodology can achieve satisfactory tracking performance in terms of accuracy and stability.

Originality/value

This research can provide theoretical and engineering guidance for lateral stability of intelligent robots under unknown disturbances and uncertain nonlinearities and facilitate the control performance of the mobile robots in a practical system.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 June 2011

Caixia Yan and Qiang Zhan

The purpose of this paper is to describe how the authors designed a small satellite formation ground test bed in order to study the small satellite formation flying technologies…

Abstract

Purpose

The purpose of this paper is to describe how the authors designed a small satellite formation ground test bed in order to study the small satellite formation flying technologies, such as autonomous formation control and network communication. As one of the subsystems, the vision detection system is responsible for the pose (position and orientation) detection of the three small satellite simulators, each of which is composed of a wheeled mobile robot and an on‐board micro control unit. In this paper, the rapid vision locating of the three small satellite simulators in the wide field is discussed.

Design/methodology/approach

The scene size required by the test bed has exceeded the scope of one camera, thus how to obtain the complete scene becomes a difficulty. On the base of image mosaic, a vision system composed of two cameras is designed to capture the scene simultaneously. After the two overlapped images are rapidly stitched, the real‐time view of the big scene is attained. Second, the new color tag representing the pose of small satellite simulators is designed, which can be easily identified.

Findings

A real‐time multiple mobile robots visual locating system is introduced, in which the global search algorithm and track search algorithm are combined together to identify the real‐time pose of multiple mobile robots. The switching strategy between the two algorithms is given to ensure the accuracy and improve retrieval speed.

Originality/value

The paper shows how, without camera calibration, the pose of each small satellite simulator in the world coordinate system can be directly calculated by the coordinate transformation from the image coordinate system to the world coordinate system based on relative measurement. The accuracy and real‐time performance of the vision detection system have been validated by experiments on locating static tags and dynamic tracking three small satellite simulators.

Details

Sensor Review, vol. 31 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 March 2019

Yu Qiu, Baoquan Li, Wuxi Shi and Yimei Chen

The purpose of this paper is to present a visual servo tracking strategy for the wheeled mobile robot, where the unknown feature depth information can be identified simultaneously…

Abstract

Purpose

The purpose of this paper is to present a visual servo tracking strategy for the wheeled mobile robot, where the unknown feature depth information can be identified simultaneously in the visual servoing process.

Design/methodology/approach

By using reference, desired and current images, system errors are constructed by measurable signals that are obtained by decomposing Euclidean homographies. Subsequently, by taking the advantage of the concurrent learning framework, both historical and current system data are used to construct an adaptive updating mechanism for recovering the unknown feature depth. Then, the kinematic controller is designed for the mobile robot to achieve the visual servo trajectory tracking task. Lyapunov techniques and LaSalle’s invariance principle are used to prove that system errors and the depth estimation error converge to zero synchronously.

Findings

The concurrent learning-based visual servo tracking and identification technology is found to be reliable, accurate and efficient with both simulation and comparative experimental results. Both trajectory tracking and depth estimation errors converge to zero successfully.

Originality/value

On the basis of the concurrent learning framework, an adaptive control strategy is developed for the mobile robot to successfully identify the unknown scene depth while accomplishing the visual servo trajectory tracking task.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 146