Search results

1 – 10 of over 3000
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1680

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1313

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1985

Wing Kam Liu, Ted Belytschko, Jame Shau‐Jen Ong and Sinlap Edward Law

The numerical quadrature of the stiffness matrices and force vectors is a major factor in the accuracy and efficiency of the finite element methods. Even in the analysis of linear…

Abstract

The numerical quadrature of the stiffness matrices and force vectors is a major factor in the accuracy and efficiency of the finite element methods. Even in the analysis of linear problems, the use of too many quadrature points results in a phenomenon called locking whereas the use of insufficient quadrature points results in a phenomenon called spurious singular mode. Therefore, efficient numerical quadrature schemes for structural dynamics are developed. It is expected that these improved finite elements can be used more reliably in many structural applications. The proposed developed quadrature schemes for the continuum and shell elements are straightforward and are modularized so that many existing finite element computer codes can be easily modified to accommodate the proposed capabilities. This should prove of great benefit to many computer codes which are currently used in structural engineering applications.

Details

Engineering Computations, vol. 2 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 May 1995

L. Jiang and M.W. Chernuka

A stiffened shell element is presented for geometricallynon‐linear analysis of eccentrically stiffened shell structures.Modelling with this element is more accurate than with the…

Abstract

A stiffened shell element is presented for geometrically non‐linear analysis of eccentrically stiffened shell structures. Modelling with this element is more accurate than with the traditional equivalent orthotropic plate element or with lumping stiffeners. In addition, mesh generation is easier than with the conventional finite element approach where the shell and beam elements are combined explicitly to represent stiffened structures. In the present non‐linear finite element procedure, the tangent stiffness matrix is derived using the updated Lagrangian formulation and the element strains, stresses, and internal force vectors are updated employing a corotational approach. The non‐vectorial characteristic of large rotations is taken into account. This stiffened shell element formulation is ideally suited for implementation into existing linear finite element programs and its accuracy and effectiveness have been demonstrated in several numerical examples.

Details

Engineering Computations, vol. 12 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1998

Hiroshi Okuda, Shinobu Yoshimura, Genki Yagawa and Akihiro Matsuda

Describes the parameter estimation procedures for the non‐linear finite element analysis using the hierarchical neural network. These procedures can be classified as the neural…

Abstract

Describes the parameter estimation procedures for the non‐linear finite element analysis using the hierarchical neural network. These procedures can be classified as the neural network based inverse analysis, which has been investigated by the authors. The optimum values of the parameters involved in the non‐linear finite element analysis are generally dependent on the configuration of the analysis model, the initial condition, the boundary condition, etc., and have been determined in a heuristic manner. The procedures to estimate such multiple parameters consist of the following three steps: a set of training data, which is produced over a number of non‐linear finite element computations, is prepared; a neural network is trained using the data set; the neural network is used as a tool for searching the appropriate values of multiple parameters of the non‐linear finite element analysis. The present procedures were tested for the parameter estimation of the augmented Lagrangian method for the steady‐state incompressible viscous flow analysis and the time step evaluation of the pseudo time‐dependent stress analysis for the incompressible inelastic structure.

Details

Engineering Computations, vol. 15 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1996

Jaroslav Mackerle

Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included…

Abstract

Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included at the end of the paper presents a bibliography on the subjects retrospectively to 1985 and approximately 1,100 references are listed.

Details

Engineering Computations, vol. 13 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1999

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…

4367

Abstract

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1999

D.P. Mok, W.A. Wall, M. Bischoff and E. Ramm

The present study focusses on algorithmic aspects related to deformation dependent loads in non‐linear static finite element analysis. If the deformation dependency is considered…

Abstract

The present study focusses on algorithmic aspects related to deformation dependent loads in non‐linear static finite element analysis. If the deformation dependency is considered only on the right hand side, a considerable increase in the number of iterations follows. It may also cause failure of convergence in the proximity of critical points. If in turn the deformation dependent loading is included within the consistent linearization, an additional left hand side term emerges, the so‐called load stiffness matrix. In this paper several numerical test cases are used to show and quantify the influence of the two different approaches on the iteration process. Consideration of the complete load stiffness matrix may result in a cumbersome coding effort, different for each load case, and in certain cases its derivation is even not practicable at all. Therefore also several formulations for approximated load stiffness matrices are presented. It is shown that these simplifications not only reduce the additional effort for linearization and implementation, but also keep the iterative costs relatively small and still allow the calculation of the entire equilibrium path.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000