Search results

1 – 2 of 2
Article
Publication date: 13 December 2022

Fushu Luan, Yang Chen, Ming He and Donghyun Park

The main purpose of this paper is to explore whether the nature of innovation is accumulative or radical and to what extent past year accumulation of technology stock can predict…

Abstract

Purpose

The main purpose of this paper is to explore whether the nature of innovation is accumulative or radical and to what extent past year accumulation of technology stock can predict future innovation. More importantly, the authors are concerned with whether a change of policy regime or a variance in the quality of technology will moderate the nature of innovation.

Design/methodology/approach

The authors examined a dataset of 3.6 million Chinese patents during 1985–2015 and constructed more than 5 million citation pairs across 8 sections and 128 classes to track knowledge spillover across technology fields. The authors used this citation dataset to calculate the technology innovation network. The authors constructed a measure of upstream invention, interacting the pre-existing technology innovation network with historical patent growth in each technology field, and estimated measure's impact on future innovation since 2005. The authors also constructed three sets of metrics – technology dependence, centrality and scientific value – to identify innovation quality and a policy dummy to consider the impact of policy on innovation.

Findings

Innovation growth is built upon past year accumulation and technology spillover. Innovation grows faster for technologies that are more central and grows more slowly for more valuable technologies. A pro-innovation and pro-intellectual property right (IPR) policy plays a positive and significant role in driving technical progress. The authors also found that for technologies that have faster access to new information or larger power to control knowledge flow, the upstream and downstream innovation linkage is stronger. However, this linkage is weaker for technologies that are more novel or general. On most occasions, the nature of innovation was less responsive to policy shock.

Originality/value

This paper contributes to the debate on the nature of innovation by determining whether upstream innovation has strong predictive power on future innovation. The authors develop the assumption used in the technology spillover literature by considering a time-variant, directional and asymmetric matrix to model technology diffusion. For the first time, the authors answer how the nature of innovation will vary depending on the technology network configurations and policy environment. In addition to contributing to the academic debate, the authors' study has important implications for economic growth and industrial or innovation management policies.

Details

European Journal of Innovation Management, vol. 27 no. 4
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2