Search results

1 – 2 of 2
Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Article
Publication date: 6 October 2023

Shilpa Chaudhary, Sunita Deswal and Sandeep Singh Sheoran

This study aims to analyse the behaviour of plane waves within a nonlocal transversely isotropic visco-thermoelastic medium having variable thermal conductivity.

104

Abstract

Purpose

This study aims to analyse the behaviour of plane waves within a nonlocal transversely isotropic visco-thermoelastic medium having variable thermal conductivity.

Design/methodology/approach

The concept of enunciation is used in the generalized theory of thermoelasticity in accordance with the Green–Lindsay and Eringen’s nonlocal elasticity models. The linear viscoelasticity model developed by Kelvin–Voigt is used to characterize the viscoelastic properties of transversely isotropic materials.

Findings

It has been noticed that three plane waves, which are coupled together, travel through the medium at three different speeds. The derivation of reflection coefficients and energy ratios for reflected waves is carried out by incorporating suitable boundary conditions. Numerical computations are performed for the amplitude ratios, phase speeds and energy partition and displayed in graphical form.

Originality/value

The outcomes of the numerical simulation demonstrate that the amplitude ratios are significantly influenced by variable thermal conductivity, nonlocal parameters and viscosity. It is further observed from the plots that the phase speeds in a transversely isotropic medium depend on the angle of incidence. In addition, it has been established that the energy is preserved during the reflection phenomenon.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2