Search results

1 – 2 of 2
Open Access
Article
Publication date: 17 June 2024

Xiaodong Sun, Yuanyuan Liu, Bettina Chocholaty and Steffen Marburg

Prior investigations concerning misalignment resulting from journal deformation typically relied on predefined misaligned angles. Nevertheless, scant attention has been devoted to…

246

Abstract

Purpose

Prior investigations concerning misalignment resulting from journal deformation typically relied on predefined misaligned angles. Nevertheless, scant attention has been devoted to the determination of these misaligned angles. Furthermore, existing studies commonly treat the journal as rigid under such circumstances. Therefore, the present study aims to introduce a framework for determining misaligned angles and to compare outcomes between rigid and flexible journal configurations.

Design/methodology/approach

The bearing forces are considered as an external load leading to journal deformation. This deformation is calculated using the finite element method. The pressure distribution producing the bearing force is solved using the finite difference method. The mesh grids in the finite element and finite difference methods are matched for coupling calculation. By iteration, the pressure distribution of the lubricant film at the equilibrium position is determined.

Findings

Results show that the deformation-induced misalignment has a significant influence on the performance of the bearing when the journal flexibility is taken into account. The parametric study reveals that the misalignment relies on system parameters such as bearing length-diameter ratio and static load.

Originality/value

The investigation of this work provides a quantification method of misalignment of hydrodynamic bearings considering the elastic deformation of the journal, which assists in the design of bearing in a rotor-bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0337/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 23 September 2024

Prabhugouda Mallanagouda Patil, Bharath Goudar and Ebrahim Momoniat

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to…

Abstract

Purpose

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to numerically study the Casson-Williamson THNF flow over a yawed cylinder, considering the effects of several slips and an inclined magnetic field. The THNF comprises Al2O3-TiO2-SiO2 nanoparticles because they improve heat transmission due to large thermal conductivity.

Design/methodology/approach

Applying suitable nonsimilarity variables transforms the coupled highly dimensional nonlinear partial differential equations (PDEs) into a system of nondimensional PDEs. To accomplish the goal of achieving the solution, an implicit finite difference approach is used in conjunction with Quasilinearization. With the assistance of a script written in MATLAB, the numerical results and the graphical representation of those solutions were ascertained.

Findings

As the Casson parameter β increases, there is an improvement in the velocity profiles in both chord and span orientations, while the gradients Re1/2Cf,Re1/2C¯f reduce for the same variations of β. The velocities of Casson THNF are greater than those of Casson-Williamson THNF. Approximately, a 202% and a 32% ascension are remarked in the magnitudes of Re1/2Cf and Re1/2C¯f for Casson-Williamson THNF than the Casson THNF only. When velocity slip attribute S1 jumps to 1 from 0.5, magnitude of both F(ξ,η) and Re1/2Cf fell down and it is reflected to be 396% at ξ=1, Wi=1 and β=1. An augmentation in thermal jump results in advanced fluid temperature and lower Re1/2Nu. In particular, about 159% of down drift is detected when S2 taking 1.

Originality/value

There is no existing research on the effects of Casson-Williamson THNF flow over a yawed cylinder with multiple slips and an angled magnetic field, according to the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Only Open Access

Year

Last 6 months (2)

Content type

1 – 2 of 2