Search results

1 – 3 of 3
Open Access
Article
Publication date: 4 January 2024

Chang Liu, Shiwu Yang, Yixuan Yang, Hefei Cao and Shanghe Liu

In the continuous development of high-speed railways, ensuring the safety of the operation control system is crucial. Electromagnetic interference (EMI) faults in signaling…

Abstract

Purpose

In the continuous development of high-speed railways, ensuring the safety of the operation control system is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation interruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances on signaling equipment and establishing evaluation methods for the correlation between EMI and safety is urgently needed.

Design/methodology/approach

This paper elaborates on the necessity and significance of studying the impact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railway operations and continuous development. The current status of research methods and achievements from the perspectives of standard systems, reliability analysis and safety assessment are examined layer by layer. Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMI and signaling safety.

Findings

Despite certain innovative achievements in both domestic and international standard systems and related research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitative correlation between EMI and safety has yet to be established. On this basis, this paper proposes considerations for research methods pertaining to the correlation between EMI and safety.

Originality/value

This paper overviews a series of methods and outcomes derived from domestic and international studies regarding railway signaling safety, encompassing standard systems, reliability analysis and safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact of EMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as a bridge to establish the correlation between EMI and signaling safety is proposed.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 26 December 2023

Bradley J. Olson, Satyanarayana Parayitam, Matteo Cristofaro, Yongjian Bao and Wenlong Yuan

This paper elucidates the role of anger in error management (EM) and organizational learning behaviors. The study explores how anger can catalyze learning, emphasizing its…

Abstract

Purpose

This paper elucidates the role of anger in error management (EM) and organizational learning behaviors. The study explores how anger can catalyze learning, emphasizing its strategic implications.

Design/methodology/approach

A double-layered moderated-mediated model was developed and tested using data from 744 Chinese CEOs. The psychometric properties of the survey instrument were rigorously examined through structural equation modeling, and hypotheses were tested using Hayes's PROCESS macros.

Findings

The findings reveal that anger is a precursor for recognizing the value of significant errors, leading to a positive association with learning behavior among top management team members. Additionally, the study uncovers a triple interaction effect of anger, EM culture and supply chain disruptions on the value of learning from errors. Extensive experience and positive grieving strengthen the relationship between recognizing value from errors and learning behavior.

Originality/value

This study uniquely integrates affect-cognitive theory and organizational learning theory, examining anger in EM and learning. The authors provide empirical evidence that anger can drive error value recognition and learning. The authors incorporate a more fine-grained approach to leadership when including executive anger as a trigger to learning behavior. Factors like experience and positive grieving are explored, deepening the understanding of emotions in learning. The authors consider both negative and positive emotions to contribute to the complexity of organizational learning.

Details

Management Decision, vol. 62 no. 13
Type: Research Article
ISSN: 0025-1747

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

487

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Access

Only content I have access to

Year

Last 3 months (3)

Content type

1 – 3 of 3