Search results

1 – 3 of 3
Open Access
Article
Publication date: 10 December 2020

Gopi Battineni, Nalini Chintalapudi and Francesco Amenta

As of July 30, 2020, more than 17 million novel coronavirus disease 2019 (COVID-19) cases were registered including 671,500 deaths. Yet, there is no immediate medicine or…

3043

Abstract

Purpose

As of July 30, 2020, more than 17 million novel coronavirus disease 2019 (COVID-19) cases were registered including 671,500 deaths. Yet, there is no immediate medicine or vaccination for control this dangerous pandemic and researchers are trying to implement mathematical or time series epidemic models to predict the disease severity with national wide data.

Design/methodology/approach

In this study, the authors considered COVID-19 daily infection data four most COVID-19 affected nations (such as the USA, Brazil, India and Russia) to conduct 60-day forecasting of total infections. To do that, the authors adopted a machine learning (ML) model called Fb-Prophet and the results confirmed that the total number of confirmed cases in four countries till the end of July were collected and projections were made by employing Prophet logistic growth model.

Findings

Results highlighted that by late September, the estimated outbreak can reach 7.56, 4.65, 3.01 and 1.22 million cases in the USA, Brazil, India and Russia, respectively. The authors found some underestimation and overestimation of daily cases, and the linear model of actual vs predicted cases found a p-value (<2.2e-16) lower than the R2 value of 0.995.

Originality/value

In this paper, the authors adopted the Fb-Prophet ML model because it can predict the epidemic trend and derive an epidemic curve.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 26 October 2020

Gopi Battineni, Nalini Chintalapudi and Francesco Amenta

After the identification of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at Wuhan, China, a pandemic was widely spread worldwide. In Italy, about 240,000…

2539

Abstract

Purpose

After the identification of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at Wuhan, China, a pandemic was widely spread worldwide. In Italy, about 240,000 people were infected because of this virus including 34,721 deaths until the end of June 2020. To control this new pandemic, epidemiologists recommend the enforcement of serious mitigation measures like country lockdown, contact tracing or testing, social distancing and self-isolation.

Design/methodology/approach

This paper presents the most popular epidemic model of susceptible (S), exposed (E), infected (I) and recovered (R) collectively called SEIR to understand the virus spreading among the Italian population.

Findings

Developed SEIR model explains the infection growth across Italy and presents epidemic rates after and before country lockdown. The results demonstrated that follow-up of strict measures such that country lockdown along with high testing is making Italy practically a pandemic-free country.

Originality/value

These models largely help to estimate and understand how an infectious agent spreads in a particular country and how individual factors can affect the dynamics. Further studies like classical SEIR modeling can improve the quality of data and implementation of this modeling could represent a novelty of epidemic models.

Details

Applied Computing and Informatics, vol. 20 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 28 July 2020

Gopi Battineni, Nalini Chintalapudi and Francesco Amenta

Medical training is a foundation on which better health care quality has been built. Freshly graduated doctors have required a good knowledge of practical competencies, which…

Abstract

Medical training is a foundation on which better health care quality has been built. Freshly graduated doctors have required a good knowledge of practical competencies, which demands the importance of medical training activities. As of this, we propose a methodology to discover a process model for identifying the sequence of medical training activities that had implemented in the installation of a Central Venous Catheter (CVC) with the ultrasound technique. A dataset with twenty medical video recordings were composed with events in the CVC installation. To develop the process model, the adoption of process mining techniques of infrequent Inductive Miner (iIM) with a noise threshold value of 0.3 had done. A combination of parallel and sequential events of the process model was developed. Besides, process conformance was validated with replay fitness value about 61.1%, and it provided evidence that four activities were not correctly fit in the process model. The present study can assist upcoming doctors involved in CVCs surgery by providing continuous training and feedback on better patient care.

Details

Applied Computing and Informatics, vol. 18 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 3 of 3