Search results

1 – 2 of 2
Open Access
Article
Publication date: 30 May 2023

Tommaso Stomaci, Francesco Buonamici, Giacomo Gelati, Francesco Meucci and Monica Carfagni

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing…

Abstract

Purpose

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing technologies. The literature shows a growing interest in the use of 3D-printed models for LAAO procedure planning and occlusion device choice. This study aims to describe a full workflow to create a 3D-printed LAA model for LAAO procedure planning.

Design/methodology/approach

The workflow starts with the patient’s computed tomography diagnostic image selection. Segmentation in a commercial software provides initial geometrical models in standard tessellation language (STL) format that are then preprocessed for print in dedicated software. Models are printed using a commercial stereolithography machine and postprocessing is performed.

Findings

Models produced with the described workflow have been used at the Careggi Hospital of Florence as LAAO auxiliary planning tool in 10 cases of interest, demonstrating a good correlation with state-of-the-art software for device selection and improving the surgeon’s understanding of patient anatomy and device positioning.

Originality/value

3D-printed models for the LAAO planning are already described in the literature. The novelty of the article lies in the detailed description of a robust workflow for the creation of these models. The robustness of the method is demonstrated by the coherent results obtained for the 10 different cases studied.

Article
Publication date: 17 September 2021

Lorenzo Fiorineschi, Tommaso Bacci, Francesco Saverio Saverio Frillici, Simone Cubeda, Yary Volpe, Federico Rotini, Monica Carfagni and Bruno Facchini

This paper aims to present the design of a particular non-reactive test rig for combustion swirlers and first stage turbine nozzles. The test rig is required for important…

Abstract

Purpose

This paper aims to present the design of a particular non-reactive test rig for combustion swirlers and first stage turbine nozzles. The test rig is required for important experimental activities aimed at the optimization of a specific class of gas turbines.

Design/methodology/approach

A multi-disciplinary team performed the design process by following a tailored design approach, which has been developed for the specific case. The design outcomes allowed to build a fully functional test rig to be introduced in a test cell and then to perform preliminary experiments about the fluid dynamic behaviour of the turbine elements.

Findings

The followed design approach allowed to efficiently perform the task, by supporting the information exchange among the different subjects involved in both the conceptual and the embodiment design of the test rig. Additionally, the performed experiments allowed to achieve a final configuration that makes the test rig a valuable test case for combustor-turbine interaction studies.

Research limitations/implications

The study described in this paper is focused on the design of a specific test rig, used for first validation tests. However, the achieved results (both in terms of design and test) constitutes the underpinning of the in-depth investigations to be performed in the next steps of the experimental campaign.

Originality/value

To the best of the authors’ knowledge, the present paper is the first one that comprehensively describes the design activity of an experimental test rig for turbine application, also providing indications about the specific methodological procedure used to manage the process.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2