Search results

1 – 1 of 1
Article
Publication date: 5 September 2016

Somaye Akbari, Mehdi Akbari, Mohammad Haghighat Kish and Firoz Mehr Mazaheri

The production of long-lasting fragrant semi-worsted fabrics using dendritic compounds as one of the nano size materials is concerned. Also quantitative assessments of the odour…

Abstract

Purpose

The production of long-lasting fragrant semi-worsted fabrics using dendritic compounds as one of the nano size materials is concerned. Also quantitative assessments of the odour intensity of the fragrant fabrics using an electronic-nose (E-nose) are made. The paper aims to discuss these issues.

Design/methodology/approach

The semi-worsted fabrics were perfumed using the second generation of polypropylene-imine (PPI) dendrimer as a host molecules. The ginseng and rosewater fragrances as guest molecules were applied into the PPI dendrimer to produce long-lasting fragrant fabrics. The odour intensity as well as long-lasting properties of the fragrant fabrics perfumed recently and the other sample perfumed one year ago were evaluated via E-nose fabricated in our laboratory. Physical properties of the fragrant fabrics were compared to the non-fragrant ones.

Findings

The interaction between ginseng and rosewater fragrances with the second generation of PPI dendrimer into the semi-worsted fabrics made a long-lasting fragrant fabrics without considerable impacts on bending length, air permeability and wrinkle recovery angles based on statistical analysis. However, the effects of making fragrant fabrics on the increasing weight are significant. In addition, the E-nose was successfully used to monitor the release of ginseng and rosewater fragrance from the fabrics by the response patterns of a temperature-modulated chemo-resistive gas sensor. E-nose analysis showed that the aroma intensity released from the old fragrant semi-worsted fabrics has no obvious diversity from that of new fragrant fabrics.

Originality/value

The findings suggest that the semi-worsted fabrics perfumed with dendritic materials revealed excellent sustained release property.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 1 of 1