Search results

1 – 10 of 32
Article
Publication date: 26 April 2024

Bo Zhang, Yuqian Zheng, Zhiyuan Cui, Dongdong Song, Faqian Liu and Weihua Li

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between…

Abstract

Purpose

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between rolling and the failure mechanism of MAO coatings in greater depth.

Design/methodology/approach

The influence of rolling on the corrosion and wear properties of MAO coating was investigated by phase structure, bond strength test (initial bond strength and wet adhesion), electrochemical impedance spectroscopy and wear test. The change of the surface electrochemical properties was studied by first principles analysis.

Findings

The results showed that the MAO coating on rolled alloy had better corrosion and wear resistance compared to cast alloy, although the structure and component content of two kinds of MAO coating are nearly identical. The difference in interface bonding between MAO coating and Mg substrate is the primary factor contributing to the disparity in performance between the two types of samples. Finally, the impact of the rolling process on MAO coating properties is explained through first-principle calculation.

Originality/value

A comprehensive explanation of the impact of the rolling process on MAO coating properties will provide substantial support for enhancing the application of Mg alloy anticorrosion.

Graphical abstract

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 December 2023

Jibing Chen, Shisen Huang, Nan Chen, Chengze Yu, Shanji Yu, Bowen Liu, Maohui Hu and Ruidi Li

This paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the…

Abstract

Purpose

This paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the aero-engine field.

Design/methodology/approach

Forming the samples with optimized parameters and analyzing the microstructure and properties of the block samples in different forming angles with scanning electron microscope, XRD, etc. so as to analyze and reveal the laws and mechanism of the block samples in different forming angles by SLM.

Findings

There are few cracks on the construction surface of SLM formed samples, and the microstructure shows columnar subgrains and cellular subgrains. The segregation of metal elements was not observed in the microstructure. The pattern shows strong texture strength on the (111) crystal plane. In the sample, the tensile strength of 60° sample is the highest, the plasticity of 90° forming sample is the best, the comprehensive property of 45° sample is the best and the fracture mode is plastic fracture. The comprehensive performance of the part is the best under the forming angle of 45°. To ensure the part size, performance and support structure processing, additional dimensions are added to the part structure.

Originality/value

In this paper, how to make samples with different forming angles is described. Combined with the standard of forged GH3536 alloy, the microstructure and properties of the samples are analyzed, and the optimal forming angle is obtained.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2024

Song Tang, Xiaowen Chen, Defen Zhang, Wanlin Xie, Qingzheng Ran, Bin Luo, Han Luo and Junwei Yang

The purpose of this study is to investigate the influence of varying concentrations of nano-SiO2 particle doping on the structure and properties of the micro-arc oxidation (MAO…

Abstract

Purpose

The purpose of this study is to investigate the influence of varying concentrations of nano-SiO2 particle doping on the structure and properties of the micro-arc oxidation (MAO) coating of 7075 aluminum alloy. This research aims to provide novel insights and methodologies for the surface treatment and protection of 7075 aluminum alloy.

Design/methodology/approach

The surface morphology of the MAO coating was characterized using scanning electron microscope. Energy spectrometer was used to characterize the elemental content and distribution on the surface and cross section of the MAO coating. The phase composition of the MAO coating was characterized using X-ray diffractometer. The corrosion resistance of the MAO coating was characterized using an electrochemical workstation.

Findings

The results showed that when the addition of nano-SiO2 particles is 3 g/L, the corrosion resistance is optimal.

Originality/value

This study investigated the influence of different concentrations of nano-SiO2 particles on the structure and properties of the MAO coating of 7075 aluminum alloy.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 February 2024

Shuliu Wang, Qianqian Liu, Jin Wang, Nana Chen, JunHang Chen, Jialiang Song, Xin Zhang and Kui Xiao

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data…

Abstract

Purpose

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data analysis.

Design/methodology/approach

Samples were subjected to accelerated corrosion for 136 days via salt spray tests to simulate the natural conditions of marine environment and consequently accelerate the experiments. Subsequently, the samples were examined using various test methods, such as EDS, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS), and the obtained data were analysed.

Findings

Galvalume coatings comprised interdigitated zinc (Zn)-rich and dendritic Al-rich phases. Corrosion was observed to begin with a Zn-rich phase. The primary components of the corrosion product film were Al2O3 and Zn5(OH)8Cl2·H2O. It was confirmed that the role of Al was to form a dense protective film, thereby successfully blocking the entry of corrosive media and protecting the iron substrate.

Originality/value

This study provides a clearer understanding of the corrosion mechanism and kinetics of galvalume coatings in a simulated marine environment. In addition, the role of Al, which is rarely mentioned in the literature, was investigated.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 January 2024

Cong Liu, Yanguo Yin and Rongrong Li

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Abstract

Purpose

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Design/methodology/approach

Cu-Bi mixed powder was ball milled at different ball–material ratios, and the preparation of Cu-Bi alloy materials was achieved through powder metallurgy technology. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were conducted to study the microstructure and phase composition of the mixed powder. The apparent density and flow characteristics of mixed powders were investigated using a Hall flowmeter. Tests on the crushing strength, impact toughness and tribological properties of self-lubricating alloy materials were conducted using a universal electronic testing machine, 300 J pendulum impact testing machine and M200 ring-block tribometer, respectively.

Findings

With the increase in ball–material ratio, the spherical copper matrix particles in the mixed powder became lamellar, the mechanical properties of the material gradually reduced, the friction coefficient of the material first decreased and then stabilized and the wear rate decreased initially and then increased. The increase in the ball–material ratio resulted in the fine network distribution of the Bi phase in the copper alloy matrix, which benefitted its enrichment on the worn surface for the formation a lubricating film and improvement of the material’s tribological performance. However, a large ball–material ratio can excessively weaken the mechanical properties of the material and reduce its wear resistance.

Originality/value

The effects of ball–material ratio on Cu-Bi mixed powder and material properties were clarified. This work provides a reference for the mechanical alloying process and its engineering applications.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 November 2023

Yingxiang Zhao, Junde Guo, Xiaoni Yan, Shan Du, Min Gong, Biao Sun, Junwen Shi and Wen Deng

The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a…

Abstract

Purpose

The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a theoretical basis for subsequent research on high-performance copper-based self-lubricating materials.

Design/methodology/approach

Friction tests were performed at a speed of 100 r/min, a load of 10 N, a friction radius of 5 mm and a sliding speed of 30 min. Friction experiments were carried out at RT-500°C. The phase composition of the samples was characterized by X-ray diffraction of Cu Ka radiation, and the microstructure, morphology and elemental distribution were characterized by scanning electron microscopy and energy dispersive spectroscopy. Reactants and valences formed during the wear process were analyzed by X-ray photoelectron spectroscopy.

Findings

The addition of MoS2 can effectively improve friction-reducing and anti-wear action of the matrix, which is beneficial to form a lubricating film on the sliding track. After analyzing different changing mechanism of the sliding tracks, the oxides and sulfides of MoS2, MoO2, Cu2O, CuO and Ni(OH)2 were detected to form a synergetic lubricating film on the sliding track, which is responsible for the excellent tribological properties from room to elevated temperature.

Research limitations/implications

For self-lubrication Cu–Sn–Ni–MoS2 material in engineering field, there are still few available references on high-temperature application.

Practical implications

This paper provides a theoretical basis for the following research on copper-based self-lubricating materials with high performance.

Originality/value

With this statement, the authors hereby certify that the manuscript is the results of their own effort and ability. They have indicated all quotes, citations and references. Furthermore, the authors have not submitted any essay, paper or thesis with similar content elsewhere. No conflict of interest exits in the submission of this manuscript.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 January 2024

Shucai Yang, Dawei Wang and Zhanjun Xiao

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical…

Abstract

Purpose

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical advantages of both and improve the overall surface properties of the material.

Design/methodology/approach

The surface hardness of the coating was measured by a microhardness tester, the surface element composition of the coating was tested by an energy spectrum analyzer and the phase was measured by an X-ray diffractometer to observe the surface morphology after the friction and wear experiment.

Findings

Laser will generate new oxide and nitride films on the surface of the coating, which will improve the hardness of the coating surface and the bonding strength between the coating and the substrate. The surface micro-texture can collect wear debris during the friction process, reduce abrasive wear and play a good role in inhibiting the expansion of the coating failure zone.

Originality/value

Most of the research on traditional laser coating is to process micro-texture first and then coating. This study is the opposite. In this paper, the modification effect of laser on the coating surface is explored, and the parameters of laser and coating are optimized, which paves the way for the subsequent milling experiments of textured coating tools.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 November 2023

Wensheng Li, Yiding Zhang, Yanwei Xu, Guangming Jiao, Dunwen Zuo, Wenting Lu, Quanshi Cheng, Jiaqi Yu and Yajun Chen

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Abstract

Purpose

This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener.

Design/methodology/approach

The Al coatings with different layer structures were prepared on TC4 by middle-frequency and direct-current combined magnetron sputtering. The cross-sectional morphology and surface roughness of coatings were characterized by scanning electron microscope and atomic force microscope. The corrosion resistance was evaluated by electrochemical method. The monolayer coating was post-treated by Alodine chemical conversion, Ar+ bombardment and a combination of two methods above.

Findings

The results show that the interfaces in bilayer and trilayer coatings reduce the defects. Ar+ bombardment reduces the corrosion current density, and Alodine chemical conversion leads to a higher pitting corrosion potential. The combined post-treatment has the highest polarization resistance.

Originality/value

The corrosion resistance of the Al coating is enhanced as the layer quantity increases. The combination of two post-treatments, Ar+ bombardment and Alodine chemical conversion, could achieve an overall improvement in corrosion resistance of Al coating.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 February 2024

Xiaowen Chen, Wanlin Xie, Song Tang, Meng Zhang, Hao Song, Qingzheng Ran and Defen Zhang

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy…

Abstract

Purpose

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy through the addition of varying concentrations of MoS2 particles to the electrolyte, aiming to enhance the corrosion resistance of magnesium alloy.

Design/methodology/approach

The surface morphology, roughness and phase composition of the coatings were analyzed using scanning electron microscopy, a hand-held roughness tester and an X-ray diffractometer, respectively, and the corrosion resistance of the MAO coatings prepared by the addition of different contents of MoS2 particles was tested and analyzed using an electrochemical workstation.

Findings

The results demonstrate that MoS2/MgO composite coatings have been successfully prepared on the surface of magnesium alloys through micro-arc oxidation. Furthermore, the corrosion resistance of the ZK60 magnesium alloy prepared with the addition of 1.0 g/L MoS2 was the best compared to the other samples.

Originality/value

MoS2 particles were able to penetrate the coatings successfully during the micro-arc oxidation process, acting as a barrier in the micropores to prevent the corrosion medium from touching the surface, thus improving the corrosion resistance of the sample. The electrochemical workstation was used to study the corrosion resistance of the MoS2/MAO coating on the ZK60 magnesium alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 32