Search results

1 – 10 of over 3000
Article
Publication date: 12 September 2024

Gabriel Sifuentes Rocha and Márcio Poletti Laurini

This study investigates the paradox of lotteries in financial markets, challenging traditional utility models predicated on rational behavior amid uncertainty. It explores why…

Abstract

Purpose

This study investigates the paradox of lotteries in financial markets, challenging traditional utility models predicated on rational behavior amid uncertainty. It explores why investors are drawn to lotteries despite the potential trade-off between risk-adjusted returns and sporadically substantial gains.

Design/methodology/approach

Employing a multifaceted approach, the study first scrutinizes diverse theories elucidating the perplexing behavior of lottery investors. Subsequently, it assesses the premium attached to lottery stock shares in the Brazilian financial market using distinct methodologies, thereby offering a comprehensive analysis of this phenomenon. Finally, the study estimates the risk premium associated with the lottery stocks applying an extended Fama–French multifactor model and searching for evidence of overlap with other risk-based anomalies.

Findings

This research unveils theories underpinning seemingly irrational investor behavior vis-à-vis lotteries, revealing the motivations propelling investors to willingly exchange risk-adjusted returns for the allure of substantial but infrequent gains. Empirical evidence delineates the extent of the premium paid for lottery stocks in the Brazilian market.

Originality/value

The study’s novelty lies in its amalgamation of theoretical exploration, empirical analysis and the application of the Fama–French factor model to gauge the risk premium associated with lottery-related behavior. Furthermore, its investigation of lottery stocks within the Brazilian market introduces a distinctive dimension, elucidating market dynamics and investor behaviors unique to the region.

Details

Review of Behavioral Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1940-5979

Keywords

Article
Publication date: 2 September 2024

Li Shaochen, Zhenyu Liu, Yu Huang, Daxin Liu, Guifang Duan and Jianrong Tan

Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship…

Abstract

Purpose

Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship between hands and operated objects and lack the modeling of subtle hand motions, which leads to a decline in accuracy for fine-grained action recognition. This paper aims to model the hand-object interactions and hand movements to realize high-accuracy assembly action recognition.

Design/methodology/approach

In this paper, a novel multi-stream hand-object interaction network (MHOINet) is proposed for assembly action recognition. To learn the hand-object interaction relationship in assembly sequence, an interaction modeling network (IMN) comprising both geometric and visual modeling is exploited in the interaction stream. The former captures the spatial location relation of hand and interacted parts/tools according to their detected bounding boxes, and the latter focuses on mining the visual context of hand and object at pixel level through a position attention model. To model the hand movements, a temporal enhancement module (TEM) with multiple convolution kernels is developed in the hand stream, which captures the temporal dependences of hand sequences in short and long ranges. Finally, assembly action prediction is accomplished by merging the outputs of different streams through a weighted score-level fusion. A robotic arm component assembly dataset is created to evaluate the effectiveness of the proposed method.

Findings

The method can achieve the recognition accuracy of 97.31% and 95.32% for coarse and fine assembly actions, which outperforms other comparative methods. Experiments on human-robot collaboration prove that our method can be applied to industrial production.

Originality/value

The author proposes a novel framework for assembly action recognition, which simultaneously leverages the features of hands, objects and hand-object interactions. The TEM enhances the representation of dynamics of hands and facilitates the recognition of assembly actions with various time spans. The IMN learns the semantic information from hand-object interactions, which is significant for distinguishing fine assembly actions.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 31 May 2024

Haylim Chha and Yongbo Peng

Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee…

Abstract

Purpose

Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee economical energy consumption versus control efficacy when non-stationary stochastic excitations drive hysteretic structures. In this regard, a novel multiscale stochastic optimal controller is invented based on the wavelet transform and the PDEM.

Design/methodology/approach

For a representative point, a conventional control law is decomposed into sub-control laws by deploying the multiresolution analysis. Then, the sub-control laws are classified into two generic control laws using resonant and non-resonant bands. Both frequency bands are established by employing actual natural frequency(ies) of structure, making computed efforts depend on actual structural properties and time-frequency effect of non-stationary stochastic excitations. Gain matrices in both bands are then acquired by a probabilistic criterion pertaining to system second-order statistics assessment. A multi-degree-of-freedom hysteretic structure driven by non-stationary and non-Gaussian stochastic ground accelerations is numerically studied, in which three distortion scenarios describing uncertainties in structural properties are considered.

Findings

Time-frequency-dependent gain matrices sophisticatedly address non-stationary stochastic excitations, providing efficient ways to independently suppress vibrations between resonant and non-resonant bands. Wavelet level, natural frequency(ies), and ratio of control forces in both bands influence the scheme’s outcomes. Presented approach outperforms existing approach in ensuring trade-off under uncertainty and randomness in system and excitations.

Originality/value

Presented control law generates control efforts relying upon resonant and non-resonant bands, and deploys actual structural properties. Cost-function weights and probabilistic criterion are promisingly developed, achieving cost-effectiveness of energy demand versus controlled structural performance.

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2022

Sophiya Shiekh, Mohammad Shahid, Manas Sambare, Raza Abbas Haidri and Dileep Kumar Yadav

Cloud computing gives several on-demand infrastructural services by dynamically pooling heterogeneous resources to cater to users’ applications. The task scheduling needs to be…

71

Abstract

Purpose

Cloud computing gives several on-demand infrastructural services by dynamically pooling heterogeneous resources to cater to users’ applications. The task scheduling needs to be done optimally to achieve proficient results in a cloud computing environment. While satisfying the user’s requirements in a cloud environment, scheduling has been proven an NP-hard problem. Therefore, it leaves scope to develop new allocation models for the problem. The aim of the study is to develop load balancing method to maximize the resource utilization in cloud environment.

Design/methodology/approach

In this paper, the parallelized task allocation with load balancing (PTAL) hybrid heuristic is proposed for jobs coming from various users. These jobs are allocated on the resources one by one in a parallelized manner as they arrive in the cloud system. The novel algorithm works in three phases: parallelization, task allocation and task reallocation. The proposed model is designed for efficient task allocation, reallocation of resources and adequate load balancing to achieve better quality of service (QoS) results.

Findings

The acquired empirical results show that PTAL performs better than other scheduling strategies under various cases for different QoS parameters under study.

Originality/value

The outcome has been examined for the real data set to evaluate it with different state-of-the-art heuristics having comparable objective parameters.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Case study
Publication date: 1 January 2024

Camilo Antonio Mejia Reatiga, David Juliao and Andres Castellanos

This case study seeks to develop the analytical and critical thinking skills of the students so that they can not only understand and carry out a comprehensive diagnosis of the…

Abstract

Learning outcomes

This case study seeks to develop the analytical and critical thinking skills of the students so that they can not only understand and carry out a comprehensive diagnosis of the case in its facets of entrepreneurship but also see reflected the inherent difficulties of the process and how these can be overcome, based on available resources and capabilities. In the same way, it seeks to develop students’ capacity for critical analysis when making a decision in which, on the one hand, there is a very large market potential that they can try to exploit, taking into account the political transformation that modifies the rules of the game with which the business began, in addition, of course, to the case of a security breach specified in the case and, on the other hand, the possibility of resigning, avoiding greater losses.

Case overview/synopsis

This case study exposes the situation of the company Max Drone Venezuela, which had been dedicated to the service, repair and training of drones. This family-owned company had gone through a series of stages that clearly exemplified how environmental factors served to identify opportunities in the early stages of the business, promote strategic actions to maintain itself, guide the course to sustain itself and seek development in hostile environments.

Complexity academic level

Given the characteristics of this case study, it can be used for the teaching and learning of business or business administration, marketing, economics or related students, at higher or postgraduate levels (graduate school).

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS3: Entrepreneurship.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

537

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

312

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2023

Kemal Subulan and Adil Baykasoğlu

The purpose of this study is to develop a holistic optimization model for an integrated sustainable fleet planning and closed-loop supply chain (CLSC) network design problem under…

Abstract

Purpose

The purpose of this study is to develop a holistic optimization model for an integrated sustainable fleet planning and closed-loop supply chain (CLSC) network design problem under uncertainty.

Design/methodology/approach

A novel mixed-integer programming model that is able to consider interactions between vehicle fleet planning and CLSC network design problems is first developed. Uncertainties of the product demand and return fractions of the end-of-life products are handled by a chance-constrained stochastic program. Several Pareto optimal solutions are generated for the conflicting sustainability objectives via compromise and fuzzy goal programming (FGP) approaches.

Findings

The proposed model is tested on a real-life lead/acid battery recovery system. By using the proposed model, sustainable fleet plans that provide a smaller fleet size, fewer empty vehicle repositions, minimal CO2 emissions, maximal vehicle safety ratings and minimal injury/illness incidence rate of transport accidents are generated. Furthermore, an environmentally and socially conscious CLSC network with maximal job creation in the less developed regions, minimal lost days resulting from the work's damages during manufacturing/recycling operations and maximal collection/recovery of end-of-life products is also designed.

Originality/value

Unlike the classical network design models, vehicle fleet planning decisions such as fleet sizing/composition, fleet assignment, vehicle inventory control, empty repositioning, etc. are also considered while designing a sustainable CLSC network. In addition to sustainability indicators in the network design, sustainability factors in fleet management are also handled. To the best of the authors' knowledge, there is no similar paper in the literature that proposes such a holistic optimization model for integrated sustainable fleet planning and CLSC network design.

1 – 10 of over 3000