Search results

1 – 2 of 2
Article
Publication date: 7 October 2021

Lisa Choe, Selvarajah Ramesh, Xu Dai, Matthew Hoehler and Matthew Bundy

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building…

Abstract

Purpose

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.

Design/methodology/approach

The fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.

Findings

Although the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.

Originality/value

This work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 April 2017

Negar Elhami Khorasani and Maria E.M. Garlock

This paper aims to present a literature review on the problem of fire following earthquake (FFE) as a potential hazard to communities in seismically active regions. The paper is…

Abstract

Purpose

This paper aims to present a literature review on the problem of fire following earthquake (FFE) as a potential hazard to communities in seismically active regions. The paper is important to work toward resilient communities that are subject to extreme hazards.

Design/methodology/approach

The paper lists and reviews the historical FFE events (20 earthquakes from 7 countries), studies the available analytical tools to evaluate fire ignition and spread in communities after an earthquake, discusses the available studies on performance of individual buildings under post-earthquake fires and summarizes the current literature on mitigation techniques for post-earthquake fires.

Findings

FFE can be considered a potential hazard for urban communities that are especially not prepared for such conditions. The available analytical models are not yet fully up to the standards that can be used by city authorities for decision-making, and therefore, should be further validated. Limited structural analyses of individual buildings under FFE scenarios have been completed. Results show that the drift demand on the building frame increases during post-earthquake fires. Despite the mitigation actions, there are still urban cities that are not prepared for such an event, such as certain areas of California in the USA.

Originality/value

The paper is a complete and an exhaustive collection of literature on different aspects of FFE. Research in earthquake engineering is well advanced, while structural analyses under fire load and performance of communities under FFE can be further advanced.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 8 no. 02
Type: Research Article
ISSN: 1759-5908

Keywords

1 – 2 of 2