Search results

1 – 6 of 6
Content available
Article
Publication date: 21 June 2011

Matteo Zoppi

899

Abstract

Details

Industrial Robot: An International Journal, vol. 38 no. 4
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 14 June 2013

Luis de Leonardo, Matteo Zoppi, Li Xiong, Dimiter Zlatanov and Rezia M. Molfino

The use of thin sheets with 3D geometries is growing in quantity, due to current progress towards life‐cycle design and sustainable production, and growing in geometrical…

Abstract

Purpose

The use of thin sheets with 3D geometries is growing in quantity, due to current progress towards life‐cycle design and sustainable production, and growing in geometrical complexity, due to aesthetic and quality concerns. The growth in manufacturing equipment flexibility has not kept pace with these trends. The purpose of this paper is to propose a new reconfigurable fixture to shorten this gap.

Design/methodology/approach

The design implements a novel concept of fixturing. Without interrupting the machining process, a swarm of adaptable mobile agents periodically reposition and reconfigure to support the thin‐sheet workpiece near the tool‐point. The technology has been developed by adopting a multi‐disciplinary, life‐cycle approach. Modularity and eco‐sustainability paradigms have informed the design.

Findings

The performance of the physical prototype in an industrial scenario is highly satisfactory. Experiments demonstrate the ability of the system to reconfigure while maintaining machining accuracy in scenarios typical for aircraft part production.

Research limitations/implications

Coordination between the machine‐tool numerical control and the fixture control is not complete and its improvement will make the manufacturing process more robust and autonomous.

Practical implications

The system allows reduction of shop‐floor fixturing inventory. Compared to other reconfigurable fixtures, SwarmItFIX is smarter, more flexible, lighter, and offers shorter reconfiguration times, easier set‐up, and better adaptability to a wider range of workpiece shapes.

Originality/value

This is a breakthrough idea, answering the challenges of hyper‐flexible manufacturing and the proliferation of thin‐sheet use. It is of significant value to mass‐customized industry and of special significance for small‐series production.

Details

Industrial Robot: An International Journal, vol. 40 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 May 2006

Rezia Molfino, Sandro Costo, Francesco Cepolina and Matteo Zoppi

To present a new special explosive ordnance disposal (EOD) robot designed to operate onboard airplanes.

Abstract

Purpose

To present a new special explosive ordnance disposal (EOD) robot designed to operate onboard airplanes.

Design/methodology/approach

The design approach adopted is multidisciplinary: mechanical and control architectures are conceived simultaneously. Modularity and lifecycle are considered. Motion and EOD tasks are controlled in tele‐operation.

Findings

A new EOD robot was designed in detail and it is ready to be built. A dynamic simulator has been written and set‐up, including a virtual reality module. The simulator is used to define the control logics. Simulation results are satisfactory. The simulator can be used as a training platform for the bomb squads.

Research limitations/implications

The intent to keep the cost of the robot low conditioned the selection of the materials. Only aluminium and standard composites (like carbon fibers composites) have been used. A higher degree of freedom of the arm could increase the usability of the system; to limit the cost, the degree of freedom was limited to seven. A decision support system based on an expert system interfaced with the simulator could improve the performance of the system.

Practical implications

A new EOD robot will be built and commercialised soon by the industrial partner Ansaldo Ricerche.

Originality/value

The EOD robots available for use inside aircrafts are discussed. A new system named AirEOD is presented, including mobile platform, dexterous arm and all related design and control issues.

Details

Industrial Robot: An International Journal, vol. 33 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 June 2009

Luca Rimassa, Matteo Zoppi and Rezia Molfino

The purpose of this paper is to present new locomotion and steering modules conceived and designed for rescue serpentine robots with enhanced climbing ability. The locomotion…

Abstract

Purpose

The purpose of this paper is to present new locomotion and steering modules conceived and designed for rescue serpentine robots with enhanced climbing ability. The locomotion modules apply sock locomotion technology that allows great motion efficiency in rubble and confined environment due to the very high propulsion ratio. The steering joints guarantee good orientation dexterity by exploiting actuation based on smart materials.

Design/methodology/approach

Great attention and time is dedicated to the design phase, digital mock‐upping and virtual comparative assessment of different solutions. Mechatronic interdisciplinary design methodology including mechanisms analysis, sensory actuation issues and functional materials characterization, control and communication integration has been adopted.

Findings

The locomotion modules are revised and updated versions improving climbing ability of the socked locomotion module originally proposed by the authors. New steering modules with high orientation workspace, based on smart actuation, are introduced.

Research limitations/implications

The evaluation of the findings on the field is planned but no experimental result is today available.

Practical implications

Agile serpentine robots are requested for quick and safe rescue and special risky interventions in environments where dense vegetation, rubble and confined spaces prevent human presence. These robots offer invaluable potential help in such risky interventions mainly by being agile in exploring the environment, robust, low cost, reliable, and tele‐operated.

Originality/value

The paper presents original issues in terms of concept and design of instrumental (locomotion and steering) modules for composing modular rescue robots with very high locomotion agility and climbing performances.

Details

Industrial Robot: An International Journal, vol. 36 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 2005

Rezia Molfino, Manuel Armada, Francesco Cepolina and Matteo Zoppi

The aim of the research is to design, build and test a robot able to autonomously execute slope consolidation tasks.

Abstract

Purpose

The aim of the research is to design, build and test a robot able to autonomously execute slope consolidation tasks.

Design/methodology/approach

A multidisciplinary approach has been adopted to solve the problem: mechanical and control architecture have been conceived simultaneously. Modularity and lifecycle are considered. The robot can climb by means of four legs and two ropes. The drilling system is hosted onboard. Drilling process is fully automated, motion can be controlled in tele‐operation.

Findings

The performance of the first prototype has satisfied the end‐user; new on‐site tests and improvements are planned.

Research limitations/implications

Roboclimber is cumbersome; both robot transport and on‐site positioning are complex operations. Coordination between legs motion and ropes tensioning is a difficult task.

Practical implications

The system reduces operating costs and working time, while avoiding the human presence in unsafe and harsh environments.

Originality/value

Roboclimber is the first robot able to do heavy duty works on rocky walls

Details

Industrial Robot: An International Journal, vol. 32 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 May 2008

Rezia Molfino, Matteo Zoppi and Luca Rimassa

The purpose of this paper is to present a cost‐effective design for a new rescue robot locomotion module using the principle of a continuous sliding membrane to achieve propulsion…

Abstract

Purpose

The purpose of this paper is to present a cost‐effective design for a new rescue robot locomotion module using the principle of a continuous sliding membrane to achieve propulsion ratio (PR) near 1. Such high PR cannot be reached by other locomotion mechanisms that have been proposed.

Design/methodology/approach

The paper first introduces the PR as a reference parameter to assess locomotion effectiveness of snake‐ and worm‐like robots. The state‐of‐the‐art is reviewed. A direction to step beyond getting PR near 1 is indicated. The way is by realizing a continuous sliding membrane. Two solutions in this direction which have been recently proposed are recalled. It is shown that none of them can be practically implemented to realize functioning systems with today's available technology. A new design with membrane actuation has been identified and it is described in detail. A prototype has been realized and earliest results and evidence of functioning described.

Findings

Critical discussion of the concept of locomotion based on a sliding membrane was conducted. A new design for a robot locomotion module applying this concept was presented. Earliest evidence of functioning and effectiveness of the new system proposed was given.

Research limitations/implications

A new locomotion principle is shown. The state‐of‐the‐art background is discussed. A design to realize the new system in a cost‐effective way is described. The research implications lie in the future development of new mobile robots with higher locomotion capability than today's available systems. Several future research and development directions are shown.

Practical implications

A new generation of more locomotion‐effective snake‐ and worm‐robots, especially for rescue application in rubble, is foreseen. The design proposed takes cost‐effectiveness and practical realizability into account.

Originality/value

The continuous sliding membrane concept had been already proposed but no reasonable realization and actuation solutions had been singled out. The design of the new locomotion system is totally new and contains several breakthrough ideas. A prototype is available proving worthy in concept and functioning. It is cost‐effective and this will allow shorter application to real robots.

Details

Industrial Robot: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 6 of 6