Search results

1 – 10 of 483
Article
Publication date: 2 September 2024

Yong Wu, Bill Wang and Baofeng Huo

This paper focuses on the last-mile logistics (LML) operations in fulfilling online grocery orders and the related sustainability considerations in sparsely populated areas like…

Abstract

Purpose

This paper focuses on the last-mile logistics (LML) operations in fulfilling online grocery orders and the related sustainability considerations in sparsely populated areas like Australia. It aims to examine how online groceries in sparsely populated areas can benefit from online business. Specifically, this study seeks to investigate whether a centralized order fulfillment approach is better than the existing approach which fulfills online orders from local grocery stores.

Design/methodology/approach

A multi-method approach is employed to conduct a high level of cost and emission analysis between the existing and the proposed approaches to illustrate the ratios between the two approaches in terms of cost and carbon emissions. Mathematical models are developed with support from the literature. The model is empirically validated with a case study of grocery distribution in the city of Gold Coast, Australia.

Findings

It finds that the centralized order fulfillment approach in sparsely populated areas can achieve LML sustainability with low cost, high efficiency and less double handling. Meanwhile, the separation of in-store and online retailing processes improves the in-store shopping experience and online shopping visibility, jointly improves customer satisfaction, and consequently achieves a positive effect on long-term sustainability. Additionally, the possibility of automating order picking and dispatching at a central place can make the processes more efficient and help build more sustainable grocery retailing supply chains by using more environmentally friendly systems.

Originality/value

This paper offers analytical and empirical insights into the sustainability of multi-channel grocery retailing supply chains. The high-level model developed first incorporates the concept of online shopping adoption rates and can serve as a decision-making tool for practitioners to improve supply chain sustainability in LML.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 17 September 2024

Jiao Ge, Jiaqi Zhang, Daheng Chen and Tiesheng Dong

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape…

Abstract

Purpose

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape memory alloy to design variable stiffness elements. Meanwhile, the purpose of this paper is also to solve the problem of not being able to install sensors on shape memory alloy due to volume limitations.

Design/methodology/approach

This paper introduces the design, modeling and control process for a variable stiffness passive ankle exoskeleton, adjusting joint stiffness using shape memory alloy (SMA). This innovative exoskeleton aids the human ankle by adapting the precompression of elastic components by SMA, thereby adjusting the ankle exoskeleton’s integral stiffness. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Findings

Using SMA as the driving force for stiffness modification in passive exoskeletons introduces several distinct advantages, inclusive of high energy density, programmability, rapid response time and simplified structural design. In the course of experimental validation, this ankle exoskeleton, endowed with variable stiffness, proficiently executed actions like squatting and walking and it can effectively increase the joint stiffness by 0.2 Nm/Deg.

Originality/value

The contribution of this paper is to introduce SMA to adjust the stiffness to actively calibrate power density to match the application requirements. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 September 2024

Xiaozeng Xu, Yikun Wu and Bo Zeng

Traditional grey models are integer order whitening differential models; these models are relatively effective for the prediction of regular raw data, but the prediction error of…

Abstract

Purpose

Traditional grey models are integer order whitening differential models; these models are relatively effective for the prediction of regular raw data, but the prediction error of irregular series or shock series is large, and the prediction effect is not ideal.

Design/methodology/approach

The new model realizes the dynamic expansion and optimization of the grey Bernoulli model. Meanwhile, it also enhances the variability and self-adaptability of the model structure. And nonlinear parameters are computed by the particle swarm optimization (PSO) algorithm.

Findings

Establishing a prediction model based on the raw data from the last six years, it is verified that the prediction performance of the new model is far superior to other mainstream grey prediction models, especially for irregular sequences and oscillating sequences. Ultimately, forecasting models are constructed to calculate various energy consumption aspects in Chongqing. The findings of this study offer a valuable reference for the government in shaping energy consumption policies and optimizing the energy structure.

Research limitations/implications

It is imperative to recognize its inherent limitations. Firstly, the fractional differential order of the model is restricted to 0 < a < 2, encompassing only a three-parameter model. Future investigations could delve into the development of a multi-parameter model applicable when a = 2. Secondly, this paper exclusively focuses on the model itself, neglecting the consideration of raw data preprocessing, such as smoothing operators, buffer operators and background values. Incorporating these factors could significantly enhance the model’s effectiveness, particularly in the context of medium-term or long-term predictions.

Practical implications

This contribution plays a constructive role in expanding the model repertoire of the grey prediction model. The utilization of the developed model for predicting total energy consumption, coal consumption, natural gas consumption, oil consumption and other energy sources from 2021 to 2022 validates the efficacy and feasibility of the innovative model.

Social implications

These findings, in turn, provide valuable guidance and decision-making support for both the Chinese Government and the Chongqing Government in optimizing energy structure and formulating effective energy policies.

Originality/value

This research holds significant importance in enriching the theoretical framework of the grey prediction model.

Highlights

The highlights of the paper are as follows:

  1. A novel grey Bernoulli prediction model is proposed to improve the model’s structure.

  2. Fractional derivative, fractional accumulating generation operator and Bernoulli equation are added to the new model.

  3. The proposed model can achieve full compatibility with the traditional mainstream grey prediction models.

  4. Energy consumption in Chongqing verifies that the performance of the new model is much better than that of the traditional grey models.

  5. The research provides a reference basis for the government to formulate energy consumption policies and optimize energy structure.

A novel grey Bernoulli prediction model is proposed to improve the model’s structure.

Fractional derivative, fractional accumulating generation operator and Bernoulli equation are added to the new model.

The proposed model can achieve full compatibility with the traditional mainstream grey prediction models.

Energy consumption in Chongqing verifies that the performance of the new model is much better than that of the traditional grey models.

The research provides a reference basis for the government to formulate energy consumption policies and optimize energy structure.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 12 July 2024

Abdulaziz Alsenafi, Fares Alazemi and M. Nawaz

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and…

Abstract

Purpose

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and development of models. The thermal performance of sample fluids is compared to determine which types of combination of nanoparticles are the best for an optimized enhancement in thermal performance of fluids. This article aims to: (i) investigate the impact of nanoparticles on thermal performance; and (ii) implement the Galerkin finite element method (GFEM) to thermal problems.

Design/methodology/approach

The mathematical models are developed using novel non-Fourier heat flux theory, conservation laws of computational fluid dynamics (CFD) and no-slip thermal boundary conditions. The models are approximated using thermal boundary layer approximations, and transformed models are solved numerically using GFEM. A grid-sensitivity test is performed. The accuracy, correction and stability of solutions is ensured. The numerical method adopted for the calculations is validated with published data. Quantities of engineering interest, i.e. wall shear stress, wall mass flow rate and wall heat flux, are calculated and examined versus emerging rheological parameters and thermal relaxation time.

Findings

The thermal relaxation time measures the ability of a fluid to restore its original thermal state, called thermal equilibrium and therefore, simulations have shown that the thermal relaxation time associated with a mono nanofluid has the most substantial effect on the temperature of fluid, whereas a ternary nanofluid has the smallest thermal relaxation time. A ternary nanofluid has a wider thermal boundary thickness in comparison with base and di- and mono nanofluids. The wall heat flux (in the case of the ternary nanofluids) has the most significant value compared with the wall shear stresses for the mono and hybrid nanofluids. The wall heat and mass fluxes have the highest values for the case of non-Fourier heat and mass diffusion compared to the case of Fourier heat and mass transfer.

Originality/value

An extensive literature review reveals that no study has considered thermal and concentration memory effects on transport mechanisms in fluids of cross-rheological liquid using novel theory of heat and mass [presented by Cattaneo (Cattaneo, 1958) and Christov (Christov, 2009)] so far. Moreover, the finite element method for coupled and nonlinear CFD problems has not been implemented so far. To the best of the authors’ knowledge for the first time, the dynamics of wall heat flow rate and mass flow rate under simultaneous effects of thermal and solute relaxation times, Ohmic dissipation and first-order chemical reactions are studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 September 2024

R. Rajaraman

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the…

Abstract

Purpose

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the irreversible Michaelis-Menten kinetic process within immobilised enzymes through advanced mathematical modelling.

Design/methodology/approach

Mathematical models were developed based on reaction-diffusion equations incorporating nonlinear variables associated with Michaelis-Menten kinetics. This research introduces fractional derivatives to investigate enzyme reaction kinetics, addressing a significant gap in the existing literature. A novel approximation method, based on the independent polynomials of the complete bipartite graph, is employed to explore solutions for substrate concentration and effectiveness factor across a spectrum of parameter values. The analytical solutions generated through the bipartite polynomial approximation method (BPAM) are rigorously tested against established methods, including the Bernoulli wavelet method (BWM), Taylor series method (TSM), Adomian decomposition method (ADM) and fourth-order Runge-Kutta method (RKM).

Findings

The study identifies two main findings. Firstly, the behaviour of dimensionless substrate concentration with distance is analysed for planar, cylindrical and spherical catalysts using both integer and fractional order Michaelis-Menten modelling. Secondly, the research investigates the variability of the dimensionless effectiveness factor with the Thiele modulus.

Research limitations/implications

The study primarily focuses on mathematical modelling and theoretical analysis, with limited experimental validation. Future research should involve more extensive experimental verification to corroborate the findings. Additionally, the study assumes ideal conditions and uniform catalyst properties, which may not fully reflect real-world complexities. Incorporating factors such as mass transfer limitations, non-uniform catalyst structures and enzyme deactivation kinetics could enhance the model’s accuracy and broaden its applicability. Furthermore, extending the analysis to include multi-enzyme systems and complex reaction networks would provide a more comprehensive understanding of biocatalytic processes.

Practical implications

The validated bipartite polynomial approximation method presents a practical tool for optimizing enzyme reactor design and operation in industrial settings. By accurately predicting substrate concentration and effectiveness factor, this approach enables efficient utilization of immobilised enzymes within porous catalysts. Implementation of these findings can lead to enhanced process efficiency, reduced operating costs and improved product yields in various biocatalytic applications such as pharmaceuticals, food processing and biofuel production. Additionally, this research fosters innovation in enzyme immobilisation techniques, offering practical insights for engineers and researchers striving to develop sustainable and economically viable bioprocesses.

Social implications

The advancement of enzyme immobilisation techniques holds promise for addressing societal challenges such as sustainable production, environmental protection and healthcare. By enabling more efficient biocatalytic processes, this research contributes to reducing industrial waste, minimizing energy consumption and enhancing access to pharmaceuticals and bio-based products. Moreover, the development of eco-friendly manufacturing practices through biocatalysis aligns with global efforts towards sustainability and mitigating climate change. The widespread adoption of these technologies can foster a more environmentally conscious society while stimulating economic growth and innovation in biotechnology and related industries.

Originality/value

This study offers a pioneering approximation method using the independent polynomials of the complete bipartite graph to investigate enzyme reaction kinetics. The comprehensive validation of this method through comparison with established solution techniques ensures its reliability and accuracy. The findings hold promise for advancing the field of biocatalysts and provide valuable insights for designing efficient enzyme reactors.

Open Access
Article
Publication date: 7 August 2024

Yoksa Salmamza Mshelia, Simon Mang’erere Onywere and Sammy Letema

This paper aims to assess the current and future dynamics of land cover transitions and analyze the vegetation conditions in Abuja city since its establishment as the capital of…

Abstract

Purpose

This paper aims to assess the current and future dynamics of land cover transitions and analyze the vegetation conditions in Abuja city since its establishment as the capital of Nigeria in 1991.

Design/methodology/approach

A random forest classifier embedded in the Google Earth Engine platform was used to classify Landsat imagery for the years 1990, 2001, 2014 and 2020. A post-classification comparison was used to detect the dynamics of land cover transitions. A hybrid simulation model that comprised cellular automata and Markovian was used to model the probable scenario of land cover changes for 2050. The trend of Normalized Difference Vegetation Index was examined using Mann–Kendall and Theil Sen’s from 2014 to 2022. Nighttime band data from the National Oceanic and Atmospheric Administration were obtained to analyze the trend of urbanization from 2014 to 2022.

Findings

The findings show that built-up areas increased by 40%, while vegetation, bare land and agricultural land decreased by 27%, 7% and 8%, respectively. Vegetation had the highest declining rate at 3.15% per annum. Built-up areas are expected to increase by 17.1% between 2020 and 2050 in contrast with other land cover. The proportion of areas with moderate vegetation improvement is estimated to be 15.10%, while the proportion of areas with no significant change was 38.10%. The overall proportion of degraded areas stands at 46.8% due to urbanization.

Originality/value

The findings provide a comprehensive insight into the dynamics of land cover transitions and vegetation variability induced by rapid urbanization in Abuja city, Nigeria. In addition, the findings provide valuable insights for policymakers and urban planners to develop a sustainable land use policy that promotes inclusivity, safety and resilience.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Article
Publication date: 23 September 2024

Paluru Sreedevi and P. Sudarsana Reddy

This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity…

Abstract

Purpose

This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity. Thermophoresis, chemical reaction and Brownian motion are also considered in flow geometry for the moment of nanoparticles.

Design/methodology/approach

Finite element method (FEM) was depleted to numerically approximate the temperature, momentum, concentration and microorganisms concentration of the nanoliquid. The present simulation was unsteady state, and the resulting transformed equations are simulated by FEM-based Mathematica algorithm.

Findings

It has been found that isotherm patterns get larger with increasing values of the magnetic field parameter. Additionally, numerical codes for rate of heat transport impedance inside the cavity with an increasing Brownian motion parameter values.

Originality/value

To the best of the authors’ knowledge, the research work carried out in this paper is new, and no part is copied from others’ works.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 February 2024

Tachia Chin, T.C.E. Cheng, Chenhao Wang and Lei Huang

Aiming to resolve cross-cultural paradoxes in combining artificial intelligence (AI) with human intelligence (HI) for international humanitarian logistics, this paper aims to…

Abstract

Purpose

Aiming to resolve cross-cultural paradoxes in combining artificial intelligence (AI) with human intelligence (HI) for international humanitarian logistics, this paper aims to adopt an unorthodox Yin–Yang dialectic approach to address how AI–HI interactions can be interpreted as a sophisticated cross-cultural knowledge creation (KC) system that enables more effective decision-making for providing humanitarian relief across borders.

Design/methodology/approach

This paper is conceptual and pragmatic in nature, whereas its structure design follows the requirements of a real impact study.

Findings

Based on experimental information and logical reasoning, the authors first identify three critical cross-cultural challenges in AI–HI collaboration: paradoxes of building a cross-cultural KC system, paradoxes of integrative AI and HI in moral judgement and paradoxes of processing moral-related information with emotions in AI–HI collaboration. Then applying the Yin–Yang dialectic to interpret Klir’s epistemological frame (1993), the authors propose an unconventional stratified system of cross-cultural KC for understanding integrative AI–HI decision-making for humanitarian logistics across cultures.

Practical implications

This paper aids not only in deeply understanding complex issues stemming from human emotions and cultural cognitions in the context of cross-border humanitarian logistics, but also equips culturally-diverse stakeholders to effectively navigate these challenges and their potential ramifications. It enhances the decision-making process and optimizes the synergy between AI and HI for cross-cultural humanitarian logistics.

Originality/value

The originality lies in the use of a cognitive methodology of the Yin–Yang dialectic to metaphorize the dynamic genesis of integrative AI-HI KC for international humanitarian logistics. Based on system science and knowledge management, this paper applies game theory, multi-objective optimization and Markov decision process to operationalize the conceptual framework in the context of cross-cultural humanitarian logistics.

Details

Journal of Knowledge Management, vol. 28 no. 7
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 27 July 2023

Ying Lu, Yunxuan Deng and Shuqi Sun

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian…

Abstract

Purpose

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian psychology impact the effectiveness of an evacuation during a metro fire. Prior research on emergency evacuation has overlooked the complexity of metro stations and failed to adequately consider the physical heterogeneity of stations and pedestrian psychology. Therefore, this study aims to develop a comprehensive evacuation optimization strategy for metro stations by applying the concept of design for safety (DFS) to an emergency evacuation. This approach offers novel insights into the management of complex systems in metro stations during emergencies.

Design/methodology/approach

Physical and social factors affecting evacuations are identified. Moreover, the social force model (SFM) is modified by combining the fire dynamics model (FDM) and considering pedestrians' impatience and panic psychology. Based on the Nanjing South Metro Station, a multiagent-based simulation (MABS) model is developed. Finally, based on DFS, optimization strategies for metro stations are suggested.

Findings

The most effective evacuation occurs when the width of the stairs is 3 meters and the transfer corridor is 14 meters. Additionally, a luggage disposal area should be set up. The exit strategy of the fewest evacuees is better than the nearest-exit strategy, and the staff in the metro station should guide pedestrians correctly.

Originality/value

Previous studies rarely consider metro stations as sociotechnical systems or apply DFS to proactively reduce evacuation risks. This study provides a new perspective on the evacuation framework of metro stations, which can guide the designers and managers of metro stations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 483