Search results

1 – 10 of 57
Article
Publication date: 10 August 2023

Zvi Schwartz, Jing Ma and Timothy Webb

Mean absolute percentage error (MAPE) is the primary forecast evaluation metric in hospitality and tourism research; however its main shortcoming is that it is asymmetric. The…

Abstract

Purpose

Mean absolute percentage error (MAPE) is the primary forecast evaluation metric in hospitality and tourism research; however its main shortcoming is that it is asymmetric. The asymmetry occurs due to over or under forecasts that introduce bias into forecast evaluation. This study aims to explore the nature of asymmetry and designs a new measure, one that reduces the asymmetric properties while maintaining MAPE’s scale-free and intuitive interpretation characteristics.

Design/methodology/approach

The study proposes and tests a new forecasting accuracy measure for hospitality revenue management (RM). A computer simulation is used to assess and demonstrate the problem of asymmetry when forecasting with MAPE, and the new measures’ (MSapeMER, that is, Mean of Selectively applied Absolute Percentage Error or Magnitude of Error Relative to the estimate) ability to reduce it. The MSapeMER’s effectiveness is empirically validated by using a large set of hotel forecasts.

Findings

The study demonstrates the ability of the MSapeMER to reduce the asymmetry bias generated by MAPE. Furthermore, this study demonstrates that MSapeMER is more effective than previous attempts to correct for asymmetry bias. The results show via simulation and empirical investigation that the error metric is more stable and less swayed by the presence of over and under forecasts.

Research limitations/implications

It is recommended that hospitality RM researchers and professionals adopt MSapeMER when using MAPE to evaluate forecasting performance. The MSapeMER removes the potential bias that MAPE invites due to its calculation and presence of over and under forecasts. Therefore, forecasting evaluations may be less affected by the presence of over and under forecasts and their ability to bias forecasting results.

Practical implications

Hospitality RM should adopt this measure when MAPE is used, to reduce biased decisions driven by the “asymmetry of MAPE.”

Originality/value

The MAPE error metric exhibits an asymmetry problem, and this paper proposes a more effective solution to reduce biased results with two major methodological contributions. It is first to systematically study the characteristics of MAPE’s asymmetry, while proposing and testing a measure that considerably reduces the amount of asymmetry. This is a critical contribution because MAPE is the primary forecasting metric in hospitality and tourism studies. The second methodological contribution is a procedure developed to “quantify” the asymmetry. The approach is demonstrated and allows future research to compare asymmetric characteristics among various accuracy measures.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 6
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 27 March 2024

Xiaomei Liu, Bin Ma, Meina Gao and Lin Chen

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey…

19

Abstract

Purpose

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey models can't catch the time-varying trend well.

Design/methodology/approach

The proposed model couples Fourier series and linear time-varying terms as the grey action, to describe the characteristics of variable amplitude and seasonality. The truncated Fourier order N is preselected from the alternative order set by Nyquist-Shannon sampling theorem and the principle of simplicity, then the optimal Fourier order is determined by hold-out method to improve the robustness of the proposed model. Initial value correction and the multiple transformation are also studied to improve the precision.

Findings

The new model has a broader applicability range as a result of the new grey action, attaining higher fitting and forecasting accuracy. The numerical experiment of a generated monthly time series indicates the proposed model can accurately fit the variable amplitude seasonal sequence, in which the mean absolute percentage error (MAPE) is only 0.01%, and the complex simulations based on Monte-Carlo method testify the validity of the proposed model. The results of monthly electricity consumption in China's primary industry, demonstrate the proposed model catches the time-varying trend and has good performances, where MAPEF and MAPET are below 5%. Moreover, the proposed TVGFM(1,1,N) model is superior to the benchmark models, grey polynomial model (GMP(1,1,N)), grey Fourier model (GFM(1,1,N)), seasonal grey model (SGM(1,1)), seasonal ARIMA model seasonal autoregressive integrated moving average model (SARIMA) and support vector regression (SVR).

Originality/value

The parameter estimates and forecasting of the new proposed TVGFM are studied, and the good fitting and forecasting accuracy of time-varying amplitude seasonal fluctuation series are testified by numerical simulations and a case study.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 28 March 2024

Chinthaka Niroshan Atapattu, Niluka Domingo and Monty Sutrisna

The current estimation practice in construction projects greatly needs upgrading, as there has been no improvement in the cost overrun issue over the past 70 years. The purpose of…

Abstract

Purpose

The current estimation practice in construction projects greatly needs upgrading, as there has been no improvement in the cost overrun issue over the past 70 years. The purpose of this research was to develop a new multiple regression analysis (MRA)-based model to forecast the final cost of road projects at the pre-design stage using data from 43 projects in New Zealand (NZ).

Design/methodology/approach

The research used the case study of 43 completed road projects in NZ. Document analysis was conducted to collect data, and statistical tests were used for model development and analysis.

Findings

Eight models were developed, and all models achieved the required F statistics and met the regression assumptions. The models’ mean absolute percentage error (MAPE) was between 21.25% and 22.77%. The model with the lowest MAPE comprised the road length and width, number of bridges, pavement area, cut and fill area, preliminary cost and cost indices change.

Research limitations/implications

The model is based on road projects in NZ. However, it was designed to be able to adapt to other contexts. The findings suggest that the model can be used to improve traditional conceptual estimating methods. Past project data is often stored by the project team but rarely used for analysing and forecasting purposes. This research emphasises that past data can be effectively used to predict the project cost at the pre-design stage with limited information.

Originality/value

No research was conducted to adopt cost modelling techniques into the conceptual estimation practice in the NZ construction industry.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Open Access
Article
Publication date: 9 November 2023

Abdulmohsen S. Almohsen, Naif M. Alsanabani, Abdullah M. Alsugair and Khalid S. Al-Gahtani

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the…

Abstract

Purpose

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the quality of the owner's estimation for predicting precisely the contract cost at the pre-tendering phase and avoiding future issues that arise through the construction phase.

Design/methodology/approach

This paper integrated artificial neural networks (ANN), deep neural networks (DNN) and time series (TS) techniques to estimate the ratio of a low bid to the OEC (R) for different size contracts and three types of contracts (building, electric and mechanic) accurately based on 94 contracts from King Saud University. The ANN and DNN models were evaluated using mean absolute percentage error (MAPE), mean sum square error (MSSE) and root mean sums square error (RMSSE).

Findings

The main finding is that the ANN provides high accuracy with MAPE, MSSE and RMSSE a 2.94%, 0.0015 and 0.039, respectively. The DNN's precision was high, with an RMSSE of 0.15 on average.

Practical implications

The owner and consultant are expected to use the study's findings to create more accuracy of the owner's estimate and decrease the difference between the owner's estimate and the lowest submitted offer for better decision-making.

Originality/value

This study fills the knowledge gap by developing an ANN model to handle missing TS data and forecasting the difference between a low bid and an OEC at the pre-tendering phase.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 December 2022

Bright Awuku, Eric Asa, Edmund Baffoe-Twum and Adikie Essegbey

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation…

Abstract

Purpose

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation agencies. Even with the existing research undertaken on the subject, the problem of inaccurate estimation of highway bid items still exists. This paper aims to assess the accuracy of the cost estimation methods employed in the selected studies to provide insights into how well they perform empirically. Additionally, this research seeks to identify, synthesize and assess the impact of the factors affecting highway unit prices because they affect the total cost of highway construction costs.

Design/methodology/approach

This paper systematically searched, selected and reviewed 105 papers from Scopus, Google Scholar, American Society of Civil Engineers (ASCE), Transportation Research Board (TRB) and Science Direct (SD) on conceptual cost estimation of highway bid items. This study used content and nonparametric statistical analyses to determine research trends, identify, categorize the factors influencing highway unit prices and assess the combined performance of conceptual cost prediction models.

Findings

Findings from the trend analysis showed that between 1983 and 2019 North America, Asia, Europe and the Middle East contributed the most to improving highway cost estimation research. Aggregating the quantitative results and weighting the findings using each study's sample size revealed that the average error between the actual and the estimated project costs of Monte-Carlo simulation models (5.49%) performed better compared to the Bayesian model (5.95%), support vector machines (6.03%), case-based reasoning (11.69%), artificial neural networks (12.62%) and regression models (13.96%). This paper identified 41 factors and was grouped into three categories, namely: (1) factors relating to project characteristics; (2) organizational factors and (3) estimate factors based on the common classification used in the selected papers. The mean ranking analysis showed that most of the selected papers used project-specific factors more when estimating highway construction bid items than the other factors.

Originality/value

This paper contributes to the body of knowledge by analyzing and comparing the performance of highway cost estimation models, identifying and categorizing a comprehensive list of cost drivers to stimulate future studies in improving highway construction cost estimates.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 August 2023

Kala Nisha Gopinathan, Punniyamoorthy Murugesan and Joshua Jebaraj Jeyaraj

This study aims to provide the best estimate of a stock's next day's closing price for a given day with the help of the hidden Markov model–Gaussian mixture model (HMM-GMM). The…

Abstract

Purpose

This study aims to provide the best estimate of a stock's next day's closing price for a given day with the help of the hidden Markov model–Gaussian mixture model (HMM-GMM). The results were compared with Hassan and Nath’s (2005) study using HMM and artificial neural network (ANN).

Design/methodology/approach

The study adopted an initialization approach wherein the hidden states of the HMM are modelled as GMM using two different approaches. Training of the HMM-GMM model is carried out using two methods. The prediction was performed by taking the closest closing price (having a log-likelihood within the tolerance range) to that of the present one as the closing price for the next day. Mean absolute percentage error (MAPE) has been used to compare the proposed GMM-HMM model against the models of the research study (Hassan and Nath, 2005).

Findings

Comparing this study with Hassan and Nath (2005) reveals that the proposed model outperformed in 66 out of the 72 different test cases. The results affirm that the model can be used for more accurate time series prediction. Further, compared with the results of the ANN model from Hassan's study, the proposed HMM model outperformed 24 of the 36 test cases.

Originality/value

The study introduced a novel initialization and two training/prediction approaches for the HMM-GMM model. It is to be noted that the study has introduced a GMM-HMM-based closing price estimator for stock price prediction. The proposed method of forecasting the stock prices using GMM-HMM is explainable and has a solid statistical foundation.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 30 April 2024

Lina Jia and MingYong Pang

The purpose of this paper is to propose a new grey prediction model, GOFHGM (1,1), which combines generalised fractal derivative and particle swarm optimisation algorithms. The…

Abstract

Purpose

The purpose of this paper is to propose a new grey prediction model, GOFHGM (1,1), which combines generalised fractal derivative and particle swarm optimisation algorithms. The aim is to address the limitations of traditional grey prediction models in order selection and improve prediction accuracy.

Design/methodology/approach

The paper introduces the concept of generalised fractal derivative and applies it to the order optimisation of grey prediction models. The particle swarm optimisation algorithm is also adopted to find the optimal combination of orders. Three cases are empirically studied to compare the performance of GOFHGM(1,1) with traditional grey prediction models.

Findings

The study finds that the GOFHGM(1,1) model outperforms traditional grey prediction models in terms of prediction accuracy. Evaluation indexes such as mean squared error (MSE) and mean absolute error (MAE) are used to evaluate the model.

Research limitations/implications

The research study may have limitations in terms of the scope and generalisability of the findings. Further research is needed to explore the applicability of GOFHGM(1,1) in different fields and to improve the model’s performance.

Originality/value

The study contributes to the field by introducing a new grey prediction model that combines generalised fractal derivative and particle swarm optimisation algorithms. This integration enhances the accuracy and reliability of grey predictions and strengthens their applicability in various predictive applications.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 25 April 2024

Tulsi Pawan Fowdur and Ashven Sanghan

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical…

Abstract

Purpose

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical appliance and transfer it securely to a local server for energy analytics such as forecasting.

Design/methodology/approach

The data capture system is composed of two current transformer (CT) sensors connected to two different electrical appliances. The CT sensors send the power readings to two Arduino microcontrollers which in turn connect to a Raspberry-Pi for aggregating the data. Blockchain is then enabled onto the Raspberry-Pi through a Java API so that the data are transmitted securely to a server. The server provides real-time visualization of the data as well as prediction using the multi-layer perceptron (MLP) and long short term memory (LSTM) algorithms.

Findings

The results for the blockchain analysis demonstrate that when the data readings are transmitted in smaller blocks, the security is much greater as compared with blocks of larger size. To assess the accuracy of the prediction algorithms data were collected for a 20 min interval to train the model and the algorithms were evaluated using the sliding window approach. The mean average percentage error (MAPE) was used to assess the accuracy of the algorithms and a MAPE of 1.62% and 1.99% was obtained for the LSTM and MLP algorithms, respectively.

Originality/value

A detailed performance analysis of the blockchain-based transmission model using time complexity, throughput and latency as well as energy forecasting has been performed.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 November 2023

Flavian Emmanuel Sapnken, Mohammed Hamaidi, Mohammad M. Hamed, Abdelhamid Issa Hassane and Jean Gaston Tamba

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic…

48

Abstract

Purpose

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).

Design/methodology/approach

Specifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.

Findings

Results show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.

Originality/value

These interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Open Access
Article
Publication date: 21 August 2023

Michele Bufalo and Giuseppe Orlando

This study aims to predict overnight stays in Italy at tourist accommodation facilities through a nonlinear, single factor, stochastic model called CIR#. The contribution of this…

Abstract

Purpose

This study aims to predict overnight stays in Italy at tourist accommodation facilities through a nonlinear, single factor, stochastic model called CIR#. The contribution of this study is twofold: in terms of forecast accuracy and in terms of parsimony (both from the perspective of the data and the complexity of the modeling), especially when a regular pattern in the time series is disrupted. This study shows that the CIR# not only performs better than the considered baseline models but also has a much lower error than other additional models or approaches reported in the literature.

Design/methodology/approach

Typically, tourism demand tends to follow regular trends, such as low and high seasons on a quarterly/monthly level and weekends and holidays on a daily level. The data set consists of nights spent in Italy at tourist accommodation establishments as collected on a monthly basis by Eurostat before and during the COVID-19 pandemic breaking regular patterns.

Findings

Traditional tourism demand forecasting models may face challenges when massive amounts of search intensity indices are adopted as tourism demand indicators. In addition, given the importance of accurate forecasts, many studies have proposed novel hybrid models or used various combinations of methods. Thus, although there are clear benefits in adopting more complex approaches, the risk is that of dealing with unwieldy models. To demonstrate how this approach can be fruitfully extended to tourism, the accuracy of the CIR# is tested by using standard metrics such as root mean squared errors, mean absolute errors, mean absolute percentage error or average relative mean squared error.

Research limitations/implications

The CIR# model is notably simpler than other models found in literature and does not rely on black box techniques such as those used in neural network (NN) or data science-based models. The carried analysis suggests that the CIR# model outperforms other reference predictions in terms of statistical significance of the error.

Practical implications

The proposed model stands out for being a viable option to the Holt–Winters (HW) model, particularly when dealing with irregular data.

Social implications

The proposed model has demonstrated superiority even when compared to other models in the literature, and it can be especially useful for tourism stakeholders when making decisions in the presence of disruptions in data patterns.

Originality/value

The novelty lies in the fact that the proposed model is a valid alternative to the HW, especially when the data are not regular. In addition, compared to many existing models in the literature, the CIR# model is notably simpler and more transparent, avoiding the “black box” nature of NN and data science-based models.

设计/方法/方法

一般来说, 旅游需求往往遵循规律的趋势, 例如季度/月的淡季和旺季, 以及日常的周末和假期。该数据集包括欧盟统计局在打破常规模式的2019冠状病毒病大流行之前和期间每月收集的在意大利旅游住宿设施度过的夜晚。

目的

本研究旨在通过一个名为cir#的非线性单因素随机模型来预测意大利游客住宿设施的过夜住宿情况。这项研究的贡献是双重的:在预测准确性方面和在简洁方面(从数据和建模复杂性的角度来看), 特别是当时间序列中的规则模式被打乱时。我们表明, cir#不仅比考虑的基线模型表现更好, 而且比文献中报告的其他模型或方法具有更低的误差。

研究结果

当大量搜索强度指标被作为旅游需求指标时, 传统的旅游需求预测模型将面临挑战。此外, 鉴于准确预测的重要性, 许多研究提出了新的混合模型或使用各种方法的组合。因此, 尽管采用更复杂的方法有明显的好处, 但风险在于处理难使用的模型。为了证明这种方法能有效地扩展到旅游业, 使用RMSE、MAE、MAPE或AvgReIMSE等标准指标来测试cir#的准确性。

研究局限/启示

cir#模型明显比文献中发现的其他模型简单, 并且不依赖于黑盒技术, 例如在神经网络或基于数据科学的模型中使用的技术。所进行的分析表明, cir#模型在误差的统计显著性方面优于其他参考预测。

实际意义

这个模型作为Holt-Winters模型的一个拟议模型, 特别是在处理不规则数据时。

社会影响

即使与文献中的其他模型相比, 所提出的模型也显示出优越性, 并且在数据模式中断时对旅游利益相关者做出决策特别有用。

创意/价值

创新之处在于所提出的模型是Holt-Winters模型的有效替代方案, 特别是当数据不规律时。此外, 与文献中的许多现有模型相比, cir#模型明显更简单、更透明, 避免了神经网络和基于数据科学的模型的“黑箱”性质。

Diseño/metodología/enfoque

Normalmente, la demanda turística tiende a seguir tendencias regulares, como temporadas altas y bajas a nivel trimestral/mensual y fines de semana y festivos a nivel diario. El conjunto de datos consiste en las pernoctaciones en Italia en establecimientos de alojamiento turístico recogidas mensualmente por Eurostat antes y durante la pandemia de COVID-19, rompiendo los patrones regulares.

Objetivo

El presente estudio pretende predecir las pernoctaciones en Italia en establecimientos de alojamiento turístico mediante un modelo estocástico no lineal de un solo factor denominado CIR#. La contribución de este estudio es doble: en términos de precisión de la predicción y en términos de parsimonia (tanto desde la perspectiva de los datos como de la complejidad de la modelización), especialmente cuando un patrón regular en la serie temporal se ve interrumpido. Demostramos que el CIR# no sólo aplica mejor que los modelos de referencia considerados, sino que también tiene un error mucho menor que otros modelos o enfoques adicionales de los que se informa en la literatura.

Resultados

Los modelos tradicionales de previsión de la demanda turística pueden enfrentarse a desafíos cuando se adoptan cantidades masivas de índices de intensidad de búsqueda como indicadores de la demanda turística. Además, dada la importancia de unas previsiones precisas, muchos estudios han propuesto modelos híbridos novedosos o han utilizado diversas combinaciones de métodos. Así pues, aunque la adopción de enfoques más complejos presenta ventajas evidentes, el riesgo es el de enfrentarse a modelos poco manejables. Para demostrar cómo este enfoque puede extenderse de forma fructífera al turismo, se comprueba la precisión del CIR# utilizando métricas estándar como RMSE, MAE, MAPE o AvgReIMSE.

Limitaciones/implicaciones de la investigación

El modelo CIR# es notablemente más sencillo que otros modelos encontrados en la literatura y no se basa en técnicas de caja negra como las utilizadas en los modelos basados en redes neuronales o en la ciencia de datos. El análisis realizado sugiere que el modelo CIR# supera a otras predicciones de referencia en términos de significación estadística del error.

Implicaciones prácticas

El modelo propuesto destaca por ser una opción viable al modelo Holt-Winters, sobre todo cuando se trata de datos irregulares.

Implicaciones sociales

El modelo propuesto ha demostrado su superioridad incluso cuando se compara con otros modelos de la bibliografía, y puede ser especialmente útil para los agentes del sector turístico a la hora de tomar decisiones cuando se producen alteraciones en los patrones de datos.

Originalidad/valor

La novedad radica en que el modelo propuesto es una alternativa válida al Holt-Winters especialmente cuando los datos no son regulares. Además, en comparación con muchos modelos existentes en la literatura, el modelo CIR# es notablemente más sencillo y transparente, evitando la naturaleza de “caja negra” de los modelos basados en redes neuronales y en ciencia de datos.

1 – 10 of 57