Search results

1 – 10 of over 1000
Article
Publication date: 26 September 2023

Dangshu Wang, Xuan Deng, Zhimin Guan, Shulin Liu, Yaqiang Yang and Xinxia Wang

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant…

57

Abstract

Purpose

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant voltage charging is realized.

Design/methodology/approach

The purpose of this study is to simplify the circuit design and control complexity of the magnetic coupling resonance wireless charging system, in order to achieve constant current and constant voltage charging for wireless energy transmission. First, the principle of LCC/S-S compensation structure is analyzed, and the equivalent mathematical model is established; then, the system characteristics under constant current and constant voltage mode are analyzed, and the design method of system parameters is given; finally, a simulation and experimental system is built to verify the correctness and feasibility of the theoretical analysis.

Findings

The results show that the proposed hybrid topology can achieve a constant current output of 2 A and a constant voltage output of 30 V under variable load conditions, and effectively suppress the current distortion problem under light load conditions. The waveform distortion rate of the inverter current is reduced from 33.97% to 10.45%.

Originality/value

By changing the high-order impedance characteristics of the compensation structure, the distortion of the current waveform under light load is suppressed, and the overall stability and efficiency of the system are improved.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 October 2023

Xuliang Yao, Xiao Han, Yuefeng Liao and Jingfang Wang

This study aims to solve the problem that under light-load conditions, the output voltage regulation capability is lost due to the fact that the voltage gain of the LLC resonant…

Abstract

Purpose

This study aims to solve the problem that under light-load conditions, the output voltage regulation capability is lost due to the fact that the voltage gain of the LLC resonant converter does not decrease with the increase of the switching frequency.

Design/methodology/approach

In this paper, the impedance model considering the parasitic parameters of the primary and secondary sides is calculated under light-load conditions, the limitations of the previous method are explained and a new circuit improvement is proposed.

Findings

In this paper, an improved circuit is proposed, and the impedance Bode plot is used to verify that the circuit can effectively improve the voltage gain problem under light-load conditions. Finally, the experimental results verify the effectiveness of the proposed circuit through comparison with traditional solutions and circuits.

Originality/value

In this paper, the impedance model considering the parasitic parameters of the primary and secondary sides is calculated, the limitations of the previous method are explained and a new circuit improvement is proposed. When compared with the previous method, the proposed circuit improvement can suppress the voltage gain increase that occurs when the switching frequency increases to a certain level.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 19 December 2022

Mohammad Fathi, Roya Amjadifard, Farshad Eshghi and Manoochehr Kelarestaghi

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs…

Abstract

Purpose

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs. Alongside designing more efficient solar panels, installing solar trackers and special circuitry for optimizing power delivery to the load according to a maximum power point tracking (MPPT) algorithm are other ways of increasing efficiency. However, it is critical for any efficiency increase to account for the power consumption of any amendments. Therefore, this paper aims to propose a novel tracker while using MPPT to boost the PV system's actual efficiency accounting for the involved costs.

Design/methodology/approach

The proposition is an experimental pneumatic dual-axis solar tracker using light-dependent resistor (LDR) sensors. Due to its embedded energy storage, the pneumatic tracker offers a low duty-cycle operation leading to tracking energy conservation, fewer maintenance needs and scalability potential. While MPPT assures maximum load power delivery, the solar PV's actual delivered power is calculated for the first time, accounting for the solar tracking and MPPT power costs.

Findings

The experiments' results show an increase of 37.6% in total and 35.3% in actual power production for the proposed solar tracking system compared to the fixed panel system, with an MPPT efficiency of 90%. Thus, the pneumatic tracking system offers low tracking-energy consumption and good actual power efficiency. Also, the newly proposed pneumatic stimulant can significantly simplify the tracking mechanism and benefit from several advantages that come along with it.

Originality/value

To the best of the authors’ knowledge, this work proposes, for the first time, a single-motor pneumatic dual-axis tracker with less implementation cost, less frequent operation switching and scalability potential, to be developed in future works. Also, the pneumatic proposal delivers high actual power efficiency for the first time to be addressed.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 April 2023

Dangshu Wang, Jiaan Yi, Luwen Song, Xuan Deng, Xinxia Wang and Zhen Dong

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Abstract

Purpose

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Design/methodology/approach

This paper proposes a simple and reliable two-stage isolated inverter composed of series quasi-resonant push-pull and external freewheeling diode full-bridge inverter. The power supply topology is analyzed, the topology mode is analyzed, the mathematical model of the converter is established and the DC gain of the converter is deduced. The relationship between the load and the output gain of the resonant tank is presented, a new resonant parameter design method is proposed, and the parameter design of the resonant element of the converter is clarified.

Findings

The resonant components of the converter are designed according to the proposed resonant parameter design method, and the correctness of the method is verified by simulation and the development and testing of a 500 W experimental prototype. After experimental tests, the peak efficiency of the experimental prototype can reach 94%. Because the experimental prototype achieves soft switching, the heat generation of the switch is greatly reduced, so the heavy heat sink is removed, and the volume is reduced by about 30% compared with the traditional power supply, and the total harmonic distortion of the output voltage is about 2%.

Originality/value

The feasibility of the scheme is verified by experiments, which is of great significance for improving the efficiency of the inverter power supply and parameter optimization.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 9 January 2024

Zhuoyu Zhang, Lijia Zhong, Mingwei Lin, Ri Lin and Dejun Li

Docking technology plays a crucial role in enabling long-duration operations of autonomous underwater vehicles (AUVs). Visual positioning solutions alone are susceptible to…

Abstract

Purpose

Docking technology plays a crucial role in enabling long-duration operations of autonomous underwater vehicles (AUVs). Visual positioning solutions alone are susceptible to abnormal drift values due to the challenging underwater optical imaging environment. When an AUV approaches the docking station, the absolute positioning method fails if the AUV captures an insufficient number of tracers. This study aims to to provide a more stable absolute position visual positioning method for underwater terminal visual docking.

Design/methodology/approach

This paper presents a six-degree-of-freedom positioning method for AUV terminal visual docking, which uses lights and triangle codes. The authors use an extended Kalman filter to fuse the visual calculation results with inertial measurement unit data. Moreover, this paper proposes a triangle code recognition and positioning algorithm.

Findings

The authors conducted a simulation experiment to compare the underwater positioning performance of triangle codes, AprilTag and Aruco. The results demonstrate that the implemented triangular code reduces the running time by over 70% compared to the other two codes, and also exhibits a longer recognition distance in turbid environments. Subsequent experiments were carried out in Qingjiang Lake, Hubei Province, China, which further confirmed the effectiveness of the proposed positioning algorithm.

Originality/value

This fusion approach effectively mitigates abnormal drift errors stemming from visual positioning and cumulative errors resulting from inertial navigation. The authors also propose a triangle code recognition and positioning algorithm as a supplementary approach to overcome the limitations of tracer light positioning beacons.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 November 2023

Kamal Pandey and Bhaskar Basu

In the context of a developing country, Indian buildings need further research to channelize energy needs optimally to reduce energy wastage, thereby reducing carbon emissions…

Abstract

Purpose

In the context of a developing country, Indian buildings need further research to channelize energy needs optimally to reduce energy wastage, thereby reducing carbon emissions. Also, reduction in smart devices’ costs with sequential advancements in Information and Communication Technology have resulted in an environment where model predictive control (MPC) strategies can be easily implemented. This study aims to propose certain preemptive measures to minimize the energy costs, while ensuring the thermal comfort for occupants, resulting in better greener solutions for building structures.

Design/methodology/approach

A simulation-based multi-input multi-output MPC strategy has been proposed. A dual objective function involving optimized energy consumption with acceptable thermal comfort has been achieved through simultaneous control of indoor temperature, humidity and illumination using various control variables. A regression-based lighting model and seasonal auto-regressive moving average with exogenous inputs (SARMAX) based temperature and humidity models have been chosen as predictor models along with four different control levels incorporated.

Findings

The mathematical approach in this study maintains an optimum tradeoff between energy cost savings and satisfactory occupants’ comfort levels. The proposed control mechanism establishes the relationships of output variables with respect to control and disturbance variables. The SARMAX and regression-based predictor models are found to be the best fit models in terms of accuracy, stability and superior performance. By adopting the proposed methodology, significant energy savings can be accomplished during certain hours of the day.

Research limitations/implications

This study has been done on a specific corporate entity and future analysis can be done on other corporate or residential buildings and in other geographical settings within India. Inclusion of sensitivity analysis and non-linear predictor models is another area of future scope.

Originality/value

This study presents a dynamic MPC strategy, using five disturbance variables which further improves the overall performance and accuracy. In contrast to previous studies on MPC, SARMAX model has been used in this study, which is a novel contribution to the theoretical literature. Four levels of control zones: pre-cooling, strict, mild and loose zones have been used in the calculations to keep the Predictive Mean Vote index within acceptable threshold limits.

Article
Publication date: 12 December 2023

Bhavya Srivastava, Shveta Singh and Sonali Jain

The present study assesses the commercial bank profit efficiency and its relationship to banking sector competition in a rapidly growing emerging economy, India from 2009 to 2019…

Abstract

Purpose

The present study assesses the commercial bank profit efficiency and its relationship to banking sector competition in a rapidly growing emerging economy, India from 2009 to 2019 using stochastic frontier analysis (SFA).

Design/methodology/approach

Lerner indices, conventional and efficiency-adjusted, quantify competition. Two SFA models are employed to calculate alternative profit efficiency (inefficiency) scores: the two-step time-decay approach proposed by Battese and Coelli (1992) and the recently developed single-step pairwise difference estimator (PDE) by Belotti and Ilardi (2018). In the first step of the BC92 framework, profit inefficiency is calculated, and in the second step, Tobit and Fractional Regression Model (FRM) are utilized to evaluate profit inefficiency correlates. PDE concurrently solves the frontier and inefficiency equations using the maximum likelihood process.

Findings

The results suggest that foreign banks are less profit efficient than domestic equivalents, supporting the “home-field advantage” hypothesis in India. Further, increasing competition drives bank managers to make riskier lending and investment choices, decreasing bank profit efficiency. However, this effect varies depending on bank ownership and size.

Originality/value

Literature on the competition bank efficiency link is conspicuously scant, with a focus on technical and cost efficiency. Less is known regarding the influence of competition on bank profit efficiency. The article is one of the first to examine commercial bank profit efficiency and its relationship to banking sector competition. Additionally, the study work represents one of the first applications of the FRM presented by Papke and Wooldridge (1996) and the PDE provided by Belotti and Ilardi (2018).

Details

Managerial Finance, vol. 50 no. 5
Type: Research Article
ISSN: 0307-4358

Keywords

Abstract

Details

The Impact of ChatGPT on Higher Education
Type: Book
ISBN: 978-1-83797-648-5

Article
Publication date: 4 March 2024

Zeyu Xing, Tachia Chin, Jing Huang, Mirko Perano and Valerio Temperini

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as…

Abstract

Purpose

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as resource optimization, environmental stewardship and workforce opportunities. Concurrently, this transformative trajectory within the power sector possesses a dual-edged nature; it may ameliorate certain challenges while accentuating others. In light of the burgeoning research stream on open innovation, this study aims to examine the intricate dynamics of knowledge-based industry-university-research networking, with an overarching objective to elucidate and calibrate the equilibrium of ambidextrous innovation within power systems.

Design/methodology/approach

The authors scrutinize the role of different innovation organizations in three innovation models: ambidextrous, exploitative and exploratory, and use a multiobjective decision analysis method-entropy weight TOPSIS. The research was conducted within the sphere of the power industry, and the authors mined data from the widely used PatSnap database.

Findings

Results show that the breadth of knowledge search and the strength of an organization’s direct relationships are crucial for ambidextrous innovation, with research institutions having the highest impact. In contrast, for exploitative innovation, depth of knowledge search, the number of R&D patents and the number of innovative products are paramount, with universities playing the most significant role. For exploratory innovation, the depth of knowledge search and the quality of two-mode network relations are vital, with research institutions yielding the best effect. Regional analysis reveals Beijing as the primary hub for ambidextrous and exploratory innovation organizations, while Jiangsu leads for exploitative innovation.

Practical implications

The study offers valuable implications to cope with the dynamic state of ambidextrous innovation performance of the entire power system. In light of the findings, the dynamic state of ambidextrous innovation performance within the power system can be adeptly managed. By emphasizing a balance between exploratory and exploitative strategies, stakeholders are better positioned to respond to evolving challenges and opportunities. Thus, the study offers pivotal guidance to ensure sustained adaptability and growth in the power sector’s innovation landscape.

Originality/value

The primary originality is to extend and refine the theoretical understanding of ambidextrous innovation within power systems. By integrating several theoretical frameworks, including social network theory, knowledge-based theory and resource-based theory, the authors enrich the theoretical landscape of power system ambidextrous innovation. Also, this inclusive examination of two-mode network structures, including the interplay between knowledge and cooperation networks, unveils the intricate interdependencies between these networks and the ambidextrous innovation of power systems. This approach significantly widens the theoretical parameters of innovation network research.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

1 – 10 of over 1000