Search results

1 – 6 of 6
Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

48

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 August 2024

Wenling Wang and Caiqin Song

The paper aims to study the constraint solutions of the periodic coupled operator matrix equations by the biconjugate residual algorithm. The new algorithm can solve a lot of…

Abstract

Purpose

The paper aims to study the constraint solutions of the periodic coupled operator matrix equations by the biconjugate residual algorithm. The new algorithm can solve a lot of constraint solutions including Hamiltonian solutions and symmetric solutions, as special cases. At the end of this paper, the new algorithm is applied to the pole assignment problem.

Design/methodology/approach

When the studied periodic coupled operator matrix equations are consistent, it is proved that constraint solutions can converge to exact solutions. It is demonstrated that the solutions of the equations can be obtained by the new algorithm with any arbitrary initial matrices without rounding error in a finite number of iterative steps. In addition, the least norm-constrained solutions can also be calculated by selecting any initial matrices when the equations of the periodic coupled operator matrix are inconsistent.

Findings

Numerical examples show that compared with some existing algorithms, the proposed method has higher convergence efficiency because less data are used in each iteration and the data is sufficient to complete an update. It not only has the best convergence accuracy but also requires the least running time for iteration, which greatly saves memory space.

Originality/value

Compared with previous algorithms, the main feature of this algorithm is that it can synthesize these equations together to get a coupled operator matrix equation. Although the equation of this paper contains multiple submatrix equations, the algorithm in this paper only needs to use the information of one submatrix equation in the equation of this paper in each iteration so that different constraint solutions of different (coupled) matrix equations can be studied for this class of equations. However, previous articles need to iterate on a specific constraint solution of a matrix equation separately.

Details

Engineering Computations, vol. 41 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 August 2024

A. Gholami, S. F. Hosseini, Kamel Milani Shirvan, Sadiq M. Sait and R. Ellahi

Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has…

Abstract

Purpose

Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has been carried out in the field of construction, operation and maintenance of silos. One of the important issues that must be investigated in silos is the behavior of their structure when the materials inside them are unloaded. Structural vibrations and the creation of normal noise usually discharge the granular of material from the silo. Both of phenomena are undesirable due to the problems they can cause to the structure and its surroundings. According to the said issues, this paper aims to investigate the vibration problem of the sulfur storage silo of the first refinery during discharge with the help of measuring experimental vibration data and simulating the silo model.

Design/methodology/approach

In the experimental investigation, the main cause of the vibration of the 400-ton silo in the refinery is used. The mass asymmetry phenomenon when the silo is filled is also considered. The experimental results are authenticated by software analysis too.

Findings

The results showed that the natural frequency of the ninth mode is almost equal to the natural frequency of sulfur discharge from the silos and has the largest shape change in the structure and vibration range. It is also concluded that the larger sulfur silo (400 tons) should be prioritized over the smaller sulfur silo (200 tons) in the emptying program, and the 400 tons silo should never be emptied even through the 200 tons silo is empty.

Originality/value

An attempt is made to investigate the issue of vibration in sulfur storage silos in the first refinery of South Pars in the form of experimental investigation and modal analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Purpose

In this paper, the authors study the nonlinear matrix equation Xp=Q±A(X-1+B)-1AT, that occurs in many applications such as in filtering, network systems, optimal control and control theory.

Design/methodology/approach

The authors present some theoretical results for the existence of the solution of this nonlinear matrix equation. Then the authors propose two iterative schemes without inversion to find the solution to the nonlinear matrix equation based on Newton's method and fixed-point iteration. Also the authors show that the proposed iterative schemes converge to the solution of the nonlinear matrix equation, under situations.

Findings

The efficiency indices of the proposed schemes are presented, and since the initial guesses of the proposed iterative schemes have a high cost, the authors reduce their cost by changing them. Therefore, compared to the previous scheme, the proposed schemes have superior efficiency indices.

Originality/value

Finally, the accuracy and effectiveness of the proposed schemes in comparison to an existing scheme are demonstrated by various numerical examples. Moreover, as an application, by using the proposed schemes, the authors can get the optimal controller state feedback of $x(t+1) = A x(t) + C v(t)$.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 July 2024

Philip Desenfans, Zifeng Gong, Dries Vanoost, Konstantinos Gryllias, Jeroen Boydens, Herbert De Gersem and Davy Pissoort

When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air…

Abstract

Purpose

When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air gap permeance calculation of single-slice magnetic equivalent circuits (MECs) of electric motors with skewed rotors. This paper aims to extend an air gap permeance calculation method incorporating flux fringing for unskewed rotors to skewed and radially eccentric rotors.

Design/methodology/approach

Assuming axial independence, the unskewed air gap permeance is rotated according to the skew and integrated along the axial dimension, resulting in a first method. The integral is approximated analytically, resulting in a second method. Results are compared to a commonly used reference method and validated using a non-linear finite element method (FEM) simulation.

Findings

The proposed methods provide better alignment with the FEM validation compared to the reference method for skewed rotors and common rotor eccentricity, i.e. below 50% of the air gap length. The analytical method is shown to be competitive with the reference method regarding computational time cost.

Originality/value

Two novel air gap permeance methods are proposed for single-slice MECs with skewed rotors. Their characteristics are discussed and validated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 March 2024

Taotao Jin, Xiuhui Cui, Chuanyue Qi and Xinyu Yang

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

52

Abstract

Purpose

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

Design/methodology/approach

The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.

Findings

The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.

Practical implications

Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.

Originality/value

The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 6 of 6