Search results

1 – 3 of 3
Article
Publication date: 6 November 2017

Yingyu Zhao, Zhenbin Chen, Jie Li, Zhen Liu, Donglei Liu and Zhizong Li

The purpose of the paper is to separate and purify flavonoids existed in Lamiophlomis rotata (Benth.) Kudo. by macroporous adsorption resin (MAR) mixed-bed technology.

Abstract

Purpose

The purpose of the paper is to separate and purify flavonoids existed in Lamiophlomis rotata (Benth.) Kudo. by macroporous adsorption resin (MAR) mixed-bed technology.

Design/methodology/approach

The adsorption and desorption parameters were characterized by UV-VIS spectrophotometry. The optimal MAR mixed bed was screened based on the adsorption experiments; the experiment process was investigated by the order of single, two and three MAR mixed bed separately; and the adsorption performance, which was composed by the authority of 80 per cent adsorption ratios and 20 per cent desorption ratios, was adopted to screen MAR mixed bed for flavonoids. The adsorption dynamic investigated the order of reaction first, and then the adsorption mechanism was researched further. The adsorption thermodynamic investigated the adsorption isotherm first, and then the adsorption feature was analyzed.

Findings

This research found that MAR mixed bed of LS-840 + LSD301 with mass ratio of mLS840:mLSD301 = 3:2 was the optimized combination, and the optimal conditions of the adsorption were volume V = 50 mL, time t = 6.5 h, T = 40°C. The desorption conditions were ethanol content = 70 per cent, desorption time t = 3.0 h, T = 40°C. The adsorption dynamic experimental data fitted better to the pseudo-second-order, and the intra-particle-diffusion model was more suitable for expression of the adsorption mechanism in mesopores process, whereas the homogeneous particle-diffusion model was more suitable in microspores. The adsorption was a physical and multilayer adsorption, and the adsorption driving force was disappeared as it transferred to the fourth layer.

Practical implications

Find an efficient way to separate flavonoids that useful for human’s health, which can not only utilize of plant resources effectively, but also make outstanding contributions to medical industry. It has very high economic and social value.

Originality/value

This contribution provided a new way to separate flavonoids from Lamiophlomis rotata (Benth.) Kudo. Under the optimal conditions, the adsorption rate (F) of MAR mixed bed LS-840 + LSD301 to the flavonoids was 97.81 per cent, the desorption rate (D) was 90.02 per cent and the purity of flavonoids was dramatically increased about 2.08 fold of the crude extract from 28 to 58.4 per cent, and the recovery yield of flavonoids arrived at 91.6 per cent after a circle of adsorption/desorption operation.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 March 2020

Yongfeng Liu, Yi Liu and Duolong Di

The purpose of this study is to focus on the preparation of macroporous adsorption resins (MARs) functionalized with carbazole and N-methylimidazole, and adsorption behaviors of…

Abstract

Purpose

The purpose of this study is to focus on the preparation of macroporous adsorption resins (MARs) functionalized with carbazole and N-methylimidazole, and adsorption behaviors of (–)-epigallocatechin gallate (EGCG) and caffeine (CAF) on the functionalized MARs.

Design/methodology/approach

Based on the Friedel–Crafts and amination reactions, novel MARs functionalized with carbazole and N-methylimidazole were synthesized and characterized by the BET method. Accordingly, adsorption behaviors and structure-activity relationships for EGCG and CAF were studied in detail.

Findings

The results showed that pseudosecond-order kinetic model was provided with a better correlation for the adsorption of EGCG and CAF onto L-1 and L-2, and pseudofirst-order kinetic model was the most suitable model to illustrate the adsorption process for EGCG and CAF on L-3. The result indicated that Langmuir, Freundlich, Temkin–Pyzhev and Dubinin–Radushkevich isotherms all could better illustrate the adsorption processes of EGCG and CAF on L-1, L-2 and L-3.

Practical implications

This study provides theoretical guidance and technical support for the efficient separation and purification of EGCG and CAF from waste tea leaves by MARs on a large scale. In addition, the results showed that this novel MARs would provide useful help and be used in large-scale production of active ingredients from natural products in the industry and other fields.

Originality/value

Adsorption kinetic models such as pseudofirst-order, pseudosecond-order and intra-particle diffusion kinetic models, and adsorption isotherm models such as Langmuir, Freundlich, Temkin–Pyzhev and Dubinin–Radushkevich isotherms models were adopted to illustrate the adsorption mechanisms of EGCG and CAF. The main driving forces for MARs with no functional groups were pore sieving effects, pp conjugation effects and hydrophobic interactions, and the other significant driving forces for MARs functionalized with carbazole and N-methylimidazole were electrostatic interactions, ion-dipole and hydrogen bonding interactions. This study might provide scientific references and useful help for large-scale separating and enriching active ingredients in natural products using the technology of MARs with special functional groups.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 August 2018

XuDong Wang, Zhenbin Chen, Jiapeng Long, Chenglong Duan and Xueyan Du

The purpose of this paper is to separate and purify flavonoids from glycyrrhiza by macroporous adsorption resin (MAR) mixed-bed technology.

Abstract

Purpose

The purpose of this paper is to separate and purify flavonoids from glycyrrhiza by macroporous adsorption resin (MAR) mixed-bed technology.

Design/methodology/approach

The adsorption performance of MAR and MAR mixed bed for flavonoids was studied using ultraviolet-visible spectrophotometry.

Findings

The research shows that the MAR mixed bed of LZ-50+LZ-59 with a mass ratio of LZ-50:LZ-59(m:m) = 1:1 was the optimized combination with the optimal conditions of adsorption (pH = 6, T = 45°C) and desorption (liquid ratio R = 70%, T = 50°C, pH = 8) obtained, relatively.

Originality/value

This paper provides a novel way to separate flavonoids from glycyrrhiza. Under the optimal conditions, the adsorption rate (F) of MAR mixed-bed LZ-50+LZ-59 to the flavonoids was 62.5 per cent/g, the desorption rate (D) was 89.23 per cent and the purity was achieved at 80 per cent.

Details

Pigment & Resin Technology, vol. 47 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 3 of 3