Search results

1 – 1 of 1
Article
Publication date: 18 March 2022

Shixin Zhang, Jianhua Shan, Fuchun Sun, Bin Fang and Yiyong Yang

The purpose of this paper is to present a novel tactile sensor and a visual-tactile recognition framework to reduce the uncertainty of the visual recognition of transparent…

Abstract

Purpose

The purpose of this paper is to present a novel tactile sensor and a visual-tactile recognition framework to reduce the uncertainty of the visual recognition of transparent objects.

Design/methodology/approach

A multitask learning model is used to recognize intuitive appearance attributes except texture in the visual mode. Tactile mode adopts a novel vision-based tactile sensor via the level-regional feature extraction network (LRFE-Net) recognition framework to acquire high-resolution texture information and temperature information. Finally, the attribute results of the two modes are integrated based on integration rules.

Findings

The recognition accuracy of attributes, such as style, handle, transparency and temperature, is near 100%, and the texture recognition accuracy is 98.75%. The experimental results demonstrate that the proposed framework with a vision-based tactile sensor can improve attribute recognition.

Originality/value

Transparency and visual differences make the texture of transparent glass hard to recognize. Vision-based tactile sensors can improve the texture recognition effect and acquire additional attributes. Integrating visual and tactile information is beneficial to acquiring complete attribute features.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1