Search results

1 – 10 of 40
Article
Publication date: 5 March 2018

Arnaud Baraston, Laurent Gerbaud and Jean-Luc Schanen

With the increasing number of onboard controlled static converters in aeronautics, methods to design lighter configurations are required. This study aims to help the designer…

Abstract

Purpose

With the increasing number of onboard controlled static converters in aeronautics, methods to design lighter configurations are required. This study aims to help the designer sizing optimal electromagnetic compatibility (EMC) filters and, moreover, finding optimal voltage levels and switching frequency, which have a great impact on the design and global mass of such converters.

Design/methodology/approach

Analytical models for capacitors, inductors and heatsink are settled. Using frequency modeling, EMC can be studied analytically. To deal with frequency and voltages variations, models of perturbations sources are developed. Concerning the problem of surveilling thousands of harmonics to check the whole frequency range of EMC standards in optimization, a strategy that drastically reduces the number of computations and has a good convergence is proposed.

Findings

The methods settled in the paper allow to optimize a controlled static converter with its EMC filters along with finding optimal switching frequency and voltage levels. A study on a three-phase rectifier reveals the importance of the switching frequency on converter design with EMC filters. A 28 per cent mass reduction is predicted by increasing the switching frequency from 10 to 30 kHz. The designed converters are verified by simulations.

Research limitations/implications

Investigating the voltage levels along with the switching frequency has not been achieved yet for static controlled converters with EMC constraints. The approach lacks experimental validations, but it is currently ongoing.

Originality/value

Dealing analytically with the changes of frequency or voltages in an EMC study is a new feature. The possibility to use deterministic algorithm is essential for dealing with the important number of constraints and the numerous interactions between all the parts of the problem, especially EMC.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Le Nhat Hoang Tran, Laurent Gerbaud, Nicolas Retière and Hieu Nguyen Huu

Static converters generate current harmonics in power grids. For numerous studies, analytical frequency modeling is preferred to carry out their harmonic modeling in the context…

Abstract

Purpose

Static converters generate current harmonics in power grids. For numerous studies, analytical frequency modeling is preferred to carry out their harmonic modeling in the context of sizing by optimization. However, a design by optimization has to consider other constraints, e.g. modeling constraints and operating constraints. In this way, this paper aims to focus on applying an analytical frequency modeling on the sizing by optimization of an aircraft electrical power channel.

Design/methodology/approach

The paper aims to size a multiphysical system by optimization. In this way, the sizing of an aircraft electrical power channel by optimization has been carried out. The models of all the channel components are analytical. Specifically, the frequency model of the power electronics is based on Tran et al. (2016) and is made of equalities and inequalities. Due to this modeling choice, the optimization satisfies hundreds of constraints, such as modeling constraints and static converter operating constraints. Furthermore, transient constraints are only verified after optimization.

Findings

The difficulty is the modeling of the system by taking into account nonlinear implicit equations having several solutions. A solution is the addition of inequality constraints to the model to guide the implicit solving. Furthermore, this greatly helps the optimization algorithm to find the good operating mode of the static converter, at steady state. This aspect is indispensable to validate the sizing model.

Research limitations/implications

The number of the configurations per operating period of the static converters is defined a priori and limited.

Originality/value

The analytical model for the sizing is formulated as a constrained optimization problem. Its solving and the sizing by optimization are carried out by the same optimization algorithm.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 April 2007

B. Delinchant, D. Duret, L. Estrabaut, L. Gerbaud, H. Nguyen Huu, B. Du Peloux, H.L. Rakotoarison, F. Verdiere and F. Wurtz

This paper is a synthesis paper which seeks to discuss an optimisation framework using software components, which is a new emerging paradigm in computer science.

Abstract

Purpose

This paper is a synthesis paper which seeks to discuss an optimisation framework using software components, which is a new emerging paradigm in computer science.

Design/methodology/approach

The goal of this paper is to show the efficiency of the software component approach for the implementation of optimisation frameworks for engineering systems in general, and electromagnetic systems in particular.

Findings

This paper highlights the component standard, a generator based on analytical expressions of the system, and an optimization service. References and examples show application in the area of electromagnetic components and systems.

Practical implications

This paper presents CADES, a framework dedicated to system design, based on optimization needs. The framework is defined with a standard implementing the software component paradigm and a pattern to use it. Indeed, this pattern details how to create and use a component (the model of the device to design).

Originality/value

This paper shows how the new emerging paradigm of software components can be used for building new generations of optimisation environment allowing capitalisation and reuse by combination of software components containing models and optimisation algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2001

J. Schutz, L. Gerbaud, J. Roudet and C. Larouci

The paper deals with the sizing of a flyback converter. The approach proposes to use symbolic calculation to perform sizing times, the accuracy and the number of parameters to…

Abstract

The paper deals with the sizing of a flyback converter. The approach proposes to use symbolic calculation to perform sizing times, the accuracy and the number of parameters to size. So, it presents a symbolic model to size a flyback converter using optimisation techniques. Such an approach is preferred to a simulation approach thanks to the flexibility of symbolic models and their possibility to treat a great set of criteria in few seconds or minutes. The expressions of a great part of the criteria are made by an automatic symbolic process – model builders – and the others are carried out by the designer. Such a model is used in a gradient optimisation process well known for its convergence properties. From this model, a builder carries out automatically the building of a dedicated sizing tool, by automatically transforming it into an optimisation problem and by automatically giving the corresponding sizing tool with its GUI.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Baidy Touré, Laurent Gerbaud, Jean-Luc Schanen and Régis Ruelland

The purpose of this paper is to deal with the design of passive filter for power electronics voltage inverters used in aircraft electrical drives (a permanent magnet synchronous…

Abstract

Purpose

The purpose of this paper is to deal with the design of passive filter for power electronics voltage inverters used in aircraft electrical drives (a permanent magnet synchronous machine fed by a six-phase voltage inverter with PMW control), using optimization for both sizing and sensibility analyses.

Design/methodology/approach

The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies.

Findings

The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies.

Research limitations/implications

The power electronics load is supposed to be a set of predefined harmonic sources, obtained by experiment or time simulation plus fast fourier transformation before the optimization process.

Practical implications

The problem has numerous constraints on the components, mainly technological constraints. The volume is minimized, respecting electromagnetic standards and an electro magnetic interference filter prototype has been made.

Originality/value

The frequency model is automatically generated. A complex aircraft application has been studied thanks to the approach. Several sensibility analyses have been carried out. An EMC filter has been sized and an experimental prototype has been made, comforting the sizing by optimization.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 June 2022

Laurent Gerbaud, Zié Drissa Diarra, Herve Chazal and Lauric Garbuio

The paper aims to deal with the exact computation of the Jacobian of a time criteria from a numerical simulation of power electronics structures, for the sizing by gradient-based…

Abstract

Purpose

The paper aims to deal with the exact computation of the Jacobian of a time criteria from a numerical simulation of power electronics structures, for the sizing by gradient-based optimization algorithm.

Design/methodology/approach

Runge Kutta 44 is used to solve the state equations. The generic approach combines numerical and symbolic approaches. The modelling of the static converter is based on ideal switches.

Findings

The paper extends the state equations to derivate any state variable according a sizing parameter. The integral expressions used for some sizing performances (e.g. average or RMS values) mix symbolic and numerical approaches. Choices are made for the derivatives of the extrema of which the search is not a continuous process. The use of an object-oriented implementation allows to have generic formulation of some design performances.

Research limitations/implications

The paper aims to propose and to test formulations of sizing criteria and their gradients; so, the modelling of the study case is carried out manually. Due to generic modelling approach used for the power electronics, the model is not completely continuous. So, the derivatives according some parameters (e.g. switch controls) must be carried out by finite differences. However, as the global behaviour is continuous, it is not critical.

Practical implications

The proposed formulations can be easily applied on simple static converter applications. For applications with large state equations, it should be possible to use the basic model of switches used in simulation tools of power electronics. The solving process and the sizing criteria formulation (with their derivatives) are generic and can be instantiate for any study.

Originality/value

The approach proposes formulations giving a numerical sizing dynamic model with a Jacobian computed, if possible, by an exact derivation useful for optimization studies. The approach gives fast simulation and fast computation of the derivatives by combining numerical and analytical approaches.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2001

L. Gerbaud, E. Atienza, A. Bolopion and J. Fandino

The paper deals with the sizing of controlled converter applications, with possibly, closed control loops, by combining several tools. The approach proposes to use symbolic…

Abstract

The paper deals with the sizing of controlled converter applications, with possibly, closed control loops, by combining several tools. The approach proposes to use symbolic calculation to perform sizing times, but also numerical calculation when symbolic expressions do not exist. The sizing model is deduced from criteria on the components (control values, average values, losses, rms values, maximum values, durations, etc.). The approach is based on two development environments: Gentiane for the modelling and simulation and Eden for the optimisation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 May 2019

Mathias Le Guyadec, Laurent Gerbaud, Emmanuel Vinot and Benoit Delinchant

The thermal modelling of an electrical machine is difficult because the thermal behavior depends on its geometry, the used materials and its manufacturing process. In the paper…

Abstract

Purpose

The thermal modelling of an electrical machine is difficult because the thermal behavior depends on its geometry, the used materials and its manufacturing process. In the paper, such a thermal model is used during the sizing process by optimization of a hybrid electric vehicle (HEV). This paper aims to deal with the sensitivities of thermal parameters on temperatures inside the electrical machine to allow the assessment of the influence of thermal parameters that are hard to assess.

Design/methodology/approach

A sensitivity analysis by Sobol indices is used to assess the sensitivities of the thermal parameters on electrical machine temperatures. As the optimization process needs fast computations, a lumped parameter thermal network (LPTN) is proposed for the thermal modelling of the machine, because of its fastness. This is also useful for the Sobol method that needs too many calls to this thermal model. This model is also used in a global model of a hybrid vehicle.

Findings

The difficulty is the thermal modelling of the machine on the validity domain of the sizing problem. The Sobol indices allow to find where a modelling effort has to be carried out.

Research limitations/implications

The Sobol indices have a significant value according to the number of calls of the model and their type (first-order, total, etc.). Therefore, the quality of the thermal sensitivity analysis is a compromise between computation times and modelling accuracy.

Practical implications

Thermal modelling of an electrical machine in a sizing process by optimization.

Originality/value

The use of Sobol indices for the sensitivity analysis of the thermal parameters of an electrical machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 September 2009

P. Enciu, F. Wurtz, L. Gerbaud and B. Delinchant

The purpose of this paper is to illustrate automatic differentiation (AD) as a new technology for the device sizing in electromagnetism by using gradient constrained optimization…

Abstract

Purpose

The purpose of this paper is to illustrate automatic differentiation (AD) as a new technology for the device sizing in electromagnetism by using gradient constrained optimization. Component architecture for the design of engineering systems (CADES) framework, previously described, is presented here with extended features.

Design/methodology/approach

The paper is subject to further usage for optimization of AD (also named algorithmic differentiation) which is a powerful technique that computes derivatives of functions described as computer programs in a programming language like C/C++, FORTRAN.

Findings

Indeed, analytical modeling is well suited regarding optimization procedure, but the modeling of complex devices needs sometimes numerical formulations. This paper then reviews the concepts implemented in CADES which aim to manage the interactions of analytical and numerical modeling inside of gradient‐based optimization procedure. Finally, the paper shows that AD has no limit for the input program complexity, or gradients accuracy, in the context of constrained optimization of an electromagnetic actuator.

Originality/value

AD is employed for a large and complex numerical code computing multidimensional integrals of functions. Thus, the paper intends to prove the AD capabilities in the context of electromagnetic device sizing by means of gradient optimization. The code complexity as also as the implications of AD usage may stand as a good reference for the researchers in this field area.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2005

I. Ammar, L. Gerbaud, Ph. R. Marin and F. Wurtz

This paper deals with the collaborative design of electromagnetic devices over the internet network. The design is made by both mechanical and electrical engineers. So, the paper…

Abstract

Purpose

This paper deals with the collaborative design of electromagnetic devices over the internet network. The design is made by both mechanical and electrical engineers. So, the paper tries to show the importance but also constraints to size such a system using a collaborative optimisation process.

Design/methodology/approach

The paper compares two approaches in order to size an electromechanical actuator between mechanical and electrical engineers. In the first one, each profession designs its part, and only common constrained are negotiated. This can result in a design process with many iterations. In the second one, electrical and mechanical engineers built together a common model of the structure and a common list of specifications: this allows a global optimisation that is more efficient.

Findings

The main result of the paper is that the second approach in which a global model is built between electrical and mechanical engineers is more efficient.

Originality/value

The originality of the paper is to explore the problems and difficulties of an optimisation of an electromechanical device between engineers of different culture working together over the internet network.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 40