Search results

1 – 1 of 1
Article
Publication date: 18 October 2011

Kiyoshi Kobayashi and Kiyoyuki Kaito

This study aims to focus on asset management of large‐scale information systems supporting infrastructures and especially seeks to address a methodology of their statistical…

Abstract

Purpose

This study aims to focus on asset management of large‐scale information systems supporting infrastructures and especially seeks to address a methodology of their statistical deterioration prediction based on their historical inspection data. Information systems are composed of many devices. Deterioration process i.e. wear‐out failure generation process of those devices is formulated by a Weibull hazard model. Furthermore, in order to consider the heterogeneity of the hazard rate of each device, the random proportional Weibull hazard model, which expresses the heterogeneity of the hazard rate as random variables, is to be proposed.

Design/methodology/approach

Large‐scale information systems comprise many components, and different types of components might have different hazard rates. Therefore, when analyzing faults of information systems that comprise various types of devices and components, it is important to consider the heterogeneity of the hazard rates that exist between the different types of components. In this study, with this in consideration, the random proportional Weibull hazard model, whose heterogeneity of hazard rates is subject to a gamma distribution, is formulated and a methodology is proposed which estimates the failure rate of various components comprising an information system.

Findings

Through a case study using a traffic control system for expressways, the validity of the proposed model is empirically verified. Concretely, as for HDD, the service life at which the survival probability is 50 percent is estimated as 158 months. However, even for the same HDD, use environment differs according to usage. Actually, among the three different usages (PC, server, others), failures happen earliest in the case of PCs, which have the highest heterogeneity parameter and a survival probability of 50 percent after 135 months of usage. On the other hand, as for others, its survival probability is 50 percent at 303 months.

Originality/value

To operationally express the heterogeneity of failure rates, the Weibull hazard model is employed as a base, and a random proportional Weibull hazard model expressing the proportional heterogeneity of hazard rates with a standard gamma distribution is formulated. By estimating the parameter of the standard proportional Weibull hazard function and the parameter of the probability distribution that expresses the heterogeneity of the proportionality constant between the types, the random proportional Weibull hazard model can easily express the heterogeneity of the hazard rates between types and components.

Details

Facilities, vol. 29 no. 13/14
Type: Research Article
ISSN: 0263-2772

Keywords

Access

Year

All dates (1)

Content type

1 – 1 of 1