Search results

1 – 2 of 2
Article
Publication date: 2 June 2023

Devesh Kumar, Gunjan Soni, Yigit Kazancoglu and Ajay Pal Singh Rathore

This research aims to update the literature about the importance of reliability in supply chain (SC) and to find out the SC determinants.

Abstract

Purpose

This research aims to update the literature about the importance of reliability in supply chain (SC) and to find out the SC determinants.

Design/methodology/approach

This research surveys while contributing to the academic grasp of supply chain reliability (SCR) concepts. The study found 45 peer-reviewed publications using a structured survey technique with a four-step filtering process. The filtering process includes data reduction processes such as an evaluation of abstract and conclusion. The filtered study focuses on SCR and its determinants.

Findings

One of the major findings is that most of the study has focused on mathematical and conceptual studies. Also, this study provides the answer to a question like how can reliability be better accepted and evolved within the SC after finding the determinants of SCR.

Originality/value

The observed methodological gap in understanding and development of SCR was identified and classified into three categories: mathematical, conceptual and empirical studies (case studies and survey’s mainly). This research will aid academics in developing and understanding the determinants of SCR.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 June 2024

Pradipta Patra and Unni Krishnan Dinesh Kumar

Opportunistic and delayed maintenances are increasingly becoming important strategies for sustainable maintenance practices since they increase the lifetime of complex systems…

Abstract

Purpose

Opportunistic and delayed maintenances are increasingly becoming important strategies for sustainable maintenance practices since they increase the lifetime of complex systems like aircrafts and heavy equipment. The objective of the current study is to quantify the optimal time window for adopting these strategies.

Design/methodology/approach

The current study considers the trade-offs between different costs involved in the opportunistic and delayed maintenances (of equipment) like the fixed cost of scheduled maintenances, the opportunistic rewards that may be earned and the cost of premature parts replacement. The probability of the opportunistic maintenance has been quantified under two different scenarios – Mission Reliability and Renewal Process. In the case of delayed maintenance, the cost of the delayed maintenance is also considered. The study uses optimization techniques to find the optimal maintenance time windows and also derive useful insights.

Findings

Apart from finding the optimal time window for the maintenance activities the study also shows that opportunistic maintenance is beneficial provided the opportunistic reward is significantly large; the cost of conducting scheduled maintenance in the pre-determined slot is significantly large. Similarly, the opportunistic maintenance may not be beneficial if the pre-mature equipment parts replacement cost is significantly high. The optimal opportunistic maintenance time is increasing function of Weibull failure rate parameter “beta” and decreasing function of Weibull failure rate parameter “theta.” In the case of optimal delayed maintenance time, these relationships reverse.

Originality/value

To the best of our knowledge, very few studies exist that have used mission reliability to study opportunistic maintenance or considered the different cost trade-offs comprehensively.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 2 of 2