Search results

1 – 10 of over 254000
Article
Publication date: 14 September 2023

Abdul-Majid Wazwaz, Mansoor Alshehri and Samir A. El-Tantawy

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Abstract

Purpose

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Design/methodology/approach

The authors use the Painlevé analysis to study its complete integrability in the Painlevé sense.

Findings

The Painlevé analysis demonstrates the compatibility condition for the model integrability with the addition of new extra terms.

Research limitations/implications

The phase shifts, phase variables and Hirota’s bilinear algorithm are used to furnish multiple soliton solutions.

Practical implications

The authors also furnish a variety of numerous periodic solutions, kink solutions and singular solutions.

Social implications

The work formally furnishes algorithms for investigating several physical systems, including plasma physics, optical communications and oceans and seas, among others.

Originality/value

This paper presents an original work using a newly developed Painlevé integrable model, as well as novel and insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Vipin Gupta, Barak M.S. and Soumik Das

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal…

Abstract

Purpose

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal effects and voids. Previous research has often overlooked the crucial aspects related to voids. This study aims to provide analytical solutions for Rayleigh waves propagating through a medium consisting of a nonlocal piezo-thermo-elastic material with voids under the Moore–Gibson–Thompson thermo-elasticity theory with memory dependencies.

Design/methodology/approach

The analytical solutions are derived using a wave-mode method, and roots are computed from the characteristic equation using the Durand–Kerner method. These roots are then filtered based on the decay condition of surface waves. The analysis pertains to a medium subjected to stress-free and isothermal boundary conditions.

Findings

Computational simulations are performed to determine the attenuation coefficient and phase velocity of Rayleigh waves. This investigation goes beyond mere calculations and examines particle motion to gain deeper insights into Rayleigh wave propagation. Furthermore, this investigates how kernel function and nonlocal parameters influence these wave phenomena.

Research limitations/implications

The results of this study reveal several unique cases that significantly contribute to the understanding of Rayleigh wave propagation within this intricate material system, particularly in the presence of voids.

Practical implications

This investigation provides valuable insights into the synergistic dynamics among piezoelectric constituents, void structures and Rayleigh wave propagation, enabling advancements in sensor technology, augmented energy harvesting methodologies and pioneering seismic monitoring approaches.

Originality/value

This study formulates a novel governing equation for a nonlocal piezo-thermo-elastic medium with voids, highlighting the significance of Rayleigh waves and investigating the impact of memory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2024

Zhuoer Yao, Zi Kan, Daochun Li, Haoyuan Shao and Jinwu Xiang

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal…

Abstract

Purpose

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal sliding mode control (GFTSMC) method is proposed for automatic carrier landing system (ACLS) to achieve safe carrier landing control.

Design/methodology/approach

First, the framework of ACLS is established, which includes flight glide path model, guidance model, approach power compensation system and flight controller model. Subsequently, the carrier deck motion model and carrier air-wake model are presented to simulate the environmental disturbances. Then, the detailed design steps of GFTSMC are provided. The stability analysis of the controller is proved by Lyapunov theorems and LaSalle’s invariance principle. Furthermore, the arrival time analysis is carried out, which proves the controller has fixed time convergence ability.

Findings

The numerical simulations are conducted. The simulation results reveal that the proposed method can guarantee a finite convergence time and safe carrier landing under various conditions. And the superiority of the proposed method is further demonstrated by comparative simulations and Monte Carlo tests.

Originality/value

The GFTSMC method proposed in this paper can achieve precise and safe carrier landing with environmental disturbances, which has important referential significance to the improvement of ACLS controller designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 April 2024

Fangqi Hong, Pengfei Wei and Michael Beer

Bayesian cubature (BC) has emerged to be one of most competitive approach for estimating the multi-dimensional integral especially when the integrand is expensive to evaluate, and…

Abstract

Purpose

Bayesian cubature (BC) has emerged to be one of most competitive approach for estimating the multi-dimensional integral especially when the integrand is expensive to evaluate, and alternative acquisition functions, such as the Posterior Variance Contribution (PVC) function, have been developed for adaptive experiment design of the integration points. However, those sequential design strategies also prevent BC from being implemented in a parallel scheme. Therefore, this paper aims at developing a parallelized adaptive BC method to further improve the computational efficiency.

Design/methodology/approach

By theoretically examining the multimodal behavior of the PVC function, it is concluded that the multiple local maxima all have important contribution to the integration accuracy as can be selected as design points, providing a practical way for parallelization of the adaptive BC. Inspired by the above finding, four multimodal optimization algorithms, including one newly developed in this work, are then introduced for finding multiple local maxima of the PVC function in one run, and further for parallel implementation of the adaptive BC.

Findings

The superiority of the parallel schemes and the performance of the four multimodal optimization algorithms are then demonstrated and compared with the k-means clustering method by using two numerical benchmarks and two engineering examples.

Originality/value

Multimodal behavior of acquisition function for BC is comprehensively investigated. All the local maxima of the acquisition function contribute to adaptive BC accuracy. Parallelization of adaptive BC is realized with four multimodal optimization methods.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2024

Junyi Chen, Buqing Cao, Zhenlian Peng, Ziming Xie, Shanpeng Liu and Qian Peng

With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application…

Abstract

Purpose

With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application recommendation approaches based on user attributes and behaviors have achieved notable effectiveness, they overlook the diffusion patterns and interdependencies of topic-specific mobile applications among user groups. mobile applications among user groups. This paper aims to capture the diffusion patterns and interdependencies of mobile applications among user groups. To achieve this, a topic-aware neural network-based mobile application recommendation method, referred to as TN-MR, is proposed.

Design/methodology/approach

In this method, first, the user representations are enhanced by introducing a topic-aware attention layer, which captures both the topic context and the diffusion history context. Second, it exploits a time-decay mechanism to simulate changes in user interest. Multitopic user representations are aggregated by the time decay module to output the user representations of cascading representations under multiple topics. Finally, user scores that are likely to download the mobile application are predicted and ranked.

Findings

Experimental comparisons and analyses were conducted on the actual 360App data set, and the results demonstrate that the effectiveness of mobile application recommendations can be significantly improved by using TN-MR.

Originality/value

In this paper, the authors propose a mobile application recommendation method based on topic-aware attention networks. By capturing the diffusion patterns and dependencies of mobile applications, it effectively assists users in selecting their applications of interest from thousands of options, significantly improving the accuracy of mobile application recommendations.

Details

International Journal of Web Information Systems, vol. 20 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 20 February 2024

Rahim Şibil

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and…

Abstract

Purpose

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and the influence of different vegetation covers in different layers.

Design/methodology/approach

Ansys Fluent, a computational fluid dynamics software, was used to calculate the flow and turbulence characteristics using a three-dimensional, turbulent (k-e realizable), incompressible and steady-flow assumption, along with various near-wall treatment approaches (standard, scalable, non-equilibrium and enhanced) in the vegetated channel. The numerical study was validated concerning an experimental study conducted in the existing literature.

Findings

The numerical model successfully predicted experimental results with relative error rates below 10%. It was determined that nonequilibrium wall functions exhibited the highest predictive success in experiment Run 1, standard wall functions in experiment Run 2 and enhanced wall treatments in experiment Run 3. This study has found that plant growth significantly alters open channel flow. In the contact zones, the velocities and the eddy viscosity are low, while in the free zones they are high. On the other hand, the turbulence kinetic energy and turbulence eddy dissipation are maximum at the solid–liquid interface, while they are minimum at free zones.

Originality/value

This is the first study, to the best of the author’s knowledge, concerning the performance of different near-wall treatment approaches on the prediction of vegetation-covered open channel flow characteristics. And this study provides valuable insights to improve the hydraulic performance of open-channel systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2024

Bushi Chen, Xunyu Zhong, Han Xie, Pengfei Peng, Huosheng Hu, Xungao Zhong and Qiang Liu

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system…

Abstract

Purpose

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system used by AMRs to overcome challenges in dynamic and changing environments.

Design/methodology/approach

This research introduces SLAM-RAMU, a lifelong SLAM system that addresses these challenges by providing precise and consistent relocalization and autonomous map updating (RAMU). During the mapping process, local odometry is obtained using iterative error state Kalman filtering, while back-end loop detection and global pose graph optimization are used for accurate trajectory correction. In addition, a fast point cloud segmentation module is incorporated to robustly distinguish between floor, walls and roof in the environment. The segmented point clouds are then used to generate a 2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D branch-and-bound search with 3D iterative closest point registration. This method ensures high accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed using the segmented point cloud on the prior map. The system also includes a map updating module that takes into account historical point cloud segmentation results. It selectively incorporates or excludes new point cloud data to ensure consistent reflection of the real environment in the map.

Findings

The performance of the SLAM-RAMU system was evaluated in real-world environments and compared against state-of-the-art (SOTA) methods. The results demonstrate that SLAM-RAMU achieves higher mapping quality and relocalization accuracy and exhibits robustness against dynamic obstacles and environmental changes.

Originality/value

Compared to other SOTA methods in simulation and real environments, SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 January 2024

Abdul-Majid Wazwaz

The purpose of this paper is to investigate a variety of Painlevé integrable equations derived from a Hamiltonian equation.

Abstract

Purpose

The purpose of this paper is to investigate a variety of Painlevé integrable equations derived from a Hamiltonian equation.

Design/methodology/approach

The newly developed Painlevé integrable equations have been handled by using Hirota’s direct method. The authors obtain multiple soliton solutions and other kinds of solutions for these six models.

Findings

The developed Hamiltonian models exhibit complete integrability in analogy with the original equation.

Research limitations/implications

The present study is to address these two main motivations: the study of the integrability features and solitons and other useful solutions for the developed equations.

Practical implications

The work introduces six Painlevé-integrable equations developed from a Hamiltonian model.

Social implications

The work presents useful algorithms for constructing new integrable equations and for handling these equations.

Originality/value

The paper presents an original work with newly developed integrable equations and shows useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2024

Liangshuai Li and Dang Luo

The damping accumulated discrete MGM(1, m) power model is proposed for the problem of forecasting the share of agricultural output value and the share of employment in China.

Abstract

Purpose

The damping accumulated discrete MGM(1, m) power model is proposed for the problem of forecasting the share of agricultural output value and the share of employment in China.

Design/methodology/approach

In this study, the damping accumulated discrete MGM(1, m) power model was developed based on the idea of discrete modelling by introducing a damping accumulated generating operator and power index. The new model can better identify the non-linear characteristics existing between different factors in the multivariate system and can accurately describe and forecast the trend of changes between data series and each of them.

Findings

The validity and rationality of the new model are verified through numerical experiment. It is forecasted that in 2023, the share of agricultural output value in China will be 7.14% and the share of agricultural employment will be 21.98%, with an overall decreasing trend.

Practical implications

The simultaneous decline in the share of agricultural output value and the share of employment is a common feature of countries that have achieved agricultural modernisation. Accurate forecasts of the share of agricultural output value and the share of employment can provide an important scientific basis for formulating appropriate agricultural development targets and policies in China.

Originality/value

The new model proposed in this study fully considers the importance of new information and has higher stability. The differential evolutionary algorithm was used to optimise the model parameters.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of over 254000