Search results

1 – 2 of 2
Article
Publication date: 23 March 2023

Qi Wang, Andrea Appolloni and Junqi Liu

Carbon reduction in the construction industry is related to the achievement of carbon emission peaks and carbon neutrality targets. Therefore, exploring the influence of current…

Abstract

Purpose

Carbon reduction in the construction industry is related to the achievement of carbon emission peaks and carbon neutrality targets. Therefore, exploring the influence of current carbon reduction policies on the construction industry is necessary. China’s low-carbon pilot (LCP) policy has been extensively studied, while LCPs mechanism and effectiveness on carbon reduction in the construction industry remain to be explored.

Design/methodology/approach

This study selected four provincial LCP regions as case studies and adopted the grounded theory method for case studies to analyze the implementation mechanism of the LCP policy on carbon reduction in the construction industry. Then, this study adopted the propensity score matching and difference-in-differences regression (PSM-DID) approach to evaluate the influence of the LCP policy on carbon intensity (CI) in the construction industry by using panel data taken from 30 provinces in China between 2008 and 2017.

Findings

The authors found that (1) the LCP policy promotes carbon reduction in the construction industry through the crossing implementation mechanism of five vertical support approaches and five horizontal support approaches. (2). The LCP policy can significantly reduce CI in the construction industry.

Originality/value

The study not only explored how is the LCP policy implemented, but also examined the effectiveness of the LCP policy in the construction industry. The policy implications of this study can help policy-makers better achieve low-carbon development targets in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 June 2023

Sarah Nazari, Payam Keshavarz Mirza Mohammadi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Dat Tien Doan and Abdulbasit Almhafdy

This paper aims to investigate the optimization of window and shading designs to reduce the building energy consumption of a standard office room while improving occupants'…

Abstract

Purpose

This paper aims to investigate the optimization of window and shading designs to reduce the building energy consumption of a standard office room while improving occupants' comfort in Tehran and Auckland.

Design/methodology/approach

The NSGA-II algorithm, as a multi-objective optimization method, is applied in this study. First, a comparison of the effects of each variable on all objectives in both cities is conducted. Afterwards, the optimal solutions and the most undesirable scenarios for each city are presented for architects and decision-makers to select or avoid.

Findings

The results indicate that, in both cities, the number of slats and their distance from the wall are the most influential variables for shading configurations. Additionally, occupants' thermal comfort in Auckland is much better than in Tehran, while the latter city can receive more daylight. Furthermore, the annual energy use in Tehran can be significantly reduced by using a proper shading device and window-to-wall ratio (WWR), while building energy consumption, especially heating, is negligible in Auckland.

Originality/value

To the best of the authors' knowledge, this is the first study that compares the differences in window and shading design between two cities, Tehran and Auckland, with similar latitudes but located in different hemispheres. The outcomes of this study can benefit two groups: firstly, architects and decision-makers can choose an appropriate WWR and shading to enhance building energy efficiency and occupants' comfort. Secondly, researchers who want to study window and shading systems can implement this approach for different climates.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 2 of 2