Search results

1 – 3 of 3
Article
Publication date: 6 March 2017

Alejandro Naval, Hector Sarnago, Ignacio Lope, Oscar Lucia and José M. Burdio

Litz wire manufacturing using mechanical procedures presents several limitations regarding reliability and repeatability, especially when a small strand diameter is used. This…

Abstract

Purpose

Litz wire manufacturing using mechanical procedures presents several limitations regarding reliability and repeatability, especially when a small strand diameter is used. This paper aims to propose a power supply design for Litz wire manufacturing using a high-frequency high-performance resonant converter.

Design/methodology/approach

This paper proposes the design of a resonant power supply for induction heating specially designed to tackle with the challenge of heating Litz wires quickly.

Findings

The proposed converter enables the removal of the isolating coating from the Litz wire through induction heating, improving significantly the manufacturing process.

Originality/value

The proposed converter improves significantly the manufacturing process of Litz wire through induction heating, with economic and reliability benefits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2017

Oscar Lucia, Hector Sarnago and José M. Burdio

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction…

Abstract

Purpose

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction heating systems and gives some examples and highlights some future design trends and perspectives.

Design/methodology/approach

The benefits of WBG semiconductors are reviewed with a special emphasis on induction heating applications.

Findings

WBG devices enable the design of higher-performance induction heating power supplies. A significant selection of the reported converters is discussed, highlighting the benefits of this technology.

Originality/value

This paper highlights the benefits of WBG semiconductors and their potential to change and improve induction heating technology in the next years.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2011

Claudio Carretero, Óscar Lucía, Jesús Acero, Rafael Alonso and José M. Burdío

The aim of this paper is to propose a design procedure based on the impedance boundary condition in order to simplify the design of inductors for domestic induction heating…

Abstract

Purpose

The aim of this paper is to propose a design procedure based on the impedance boundary condition in order to simplify the design of inductors for domestic induction heating systems.

Design/methodology/approach

An electromagnetic description of the inductor system is performed to substitute the effects of a component, named system load, for a mathematical condition, the so‐called impedance boundary condition. This is suitable to be used in electromagnetic systems involving high conductive materials at medium frequencies, as it occurs in an induction heating system. Applying this approach, a simplified electrical model arises from the general system.

Findings

A considerable reduction in the efforts devoted to design a coil for induction heating purposes is achieved, because the solution considering the variation of three physical parameters are projected to a one‐dimensional space only depending on a single parameter named corrected penetration depth. This proposal assesses the working conditions of standard induction systems.

Practical implications

This work is performed to achieve a better understanding of the fundamentals involved in the electromagnetic modeling of an induction heating system. The main goal is the definition of a better coil design process because it is probably the most time‐consuming task in the construction of a complete induction system.

Originality/value

In this paper, the so‐called corrected penetration depth is defined. This single parameter allows explaining the influence of the physical parameter of the inductor load and the excitation frequency in the equivalent of the complete inductor system. The numerical results carried out considering the corrected penetration depth instead of the physical load properties have been validated experimentally.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Access

Year

Content type

Article (3)
1 – 3 of 3