Search results

1 – 5 of 5
Article
Publication date: 6 March 2017

Alejandro Naval, Hector Sarnago, Ignacio Lope, Oscar Lucia and José M. Burdio

Litz wire manufacturing using mechanical procedures presents several limitations regarding reliability and repeatability, especially when a small strand diameter is used. This…

Abstract

Purpose

Litz wire manufacturing using mechanical procedures presents several limitations regarding reliability and repeatability, especially when a small strand diameter is used. This paper aims to propose a power supply design for Litz wire manufacturing using a high-frequency high-performance resonant converter.

Design/methodology/approach

This paper proposes the design of a resonant power supply for induction heating specially designed to tackle with the challenge of heating Litz wires quickly.

Findings

The proposed converter enables the removal of the isolating coating from the Litz wire through induction heating, improving significantly the manufacturing process.

Originality/value

The proposed converter improves significantly the manufacturing process of Litz wire through induction heating, with economic and reliability benefits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 May 2024

Pablo Guillén, Hector Sarnago, Oscar Lucia and José M. Burdio

The purpose of this paper is to develop a load detection method for domestic induction cooktops. The solution aims to minimize its impact in the converter power transmission while…

Abstract

Purpose

The purpose of this paper is to develop a load detection method for domestic induction cooktops. The solution aims to minimize its impact in the converter power transmission while enabling the estimation of the equivalent electrical parameters of the load. This method is suitable for a multi-output resonant inverter topology with shared power devices.

Design/methodology/approach

The considered multi-output converter presents power devices that are shared between several loads. Thus, applying load detection methods in the literature requires a halt in the power transfer to ensuring safe operation. The proposed method uses a complementary short-voltage pulse to excite the induction heating (IH) coil without stopping the power transfer to the remaining IH loads. With the current through the coil and the analytical equations, the equivalent inductance and resistance of the load is estimated. The precision of the method has been evaluated by simulation, and experimental results are provided.

Findings

The measurement of the current through the induction coil as a response to a short-time single-pulse voltage variation provides enough information to estimate the load equivalent parameters, allowing to differentiate between no-load, non-suitable IH load and suitable IH load situations.

Originality/value

The proposed method provides a solution for load detection without requiring additional circuitry. It aims for low power transmission to the load and ensures zero-voltage switching and reduced peak current even in no-load cases. Moreover, the proposed solution is extensible to less complex converters, as the half bridge.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 February 2024

Borja López-Alonso, Pablo Briz, Hector Sarnago, José M. Burdio and Oscar Lucia

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

27

Abstract

Purpose

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

Design/methodology/approach

The proposed method has been developed based on a previously designed electroporation system, which has the capabilities to modify the electric field distribution in real time, and to estimate the impedance distribution. Taking into consideration the features of the system and biological tissues, the problem has been addressed in three phases: modeling, control system design and simulation testing. In the first phase, a finite element analysis model has been proposed to reproduce the electric field distribution within the hepatic tissue, based on the characteristics of the electroporation system. Then, a control strategy has been proposed with the goal of ensuring complete ablation while minimizing the affected volume of healthy tissue. Finally, to check the feasibility of the proposal, several representative cases have been simulated, and the results have been compared with those obtained by a traditional system.

Findings

The proposed method achieves the proposed goal, as part of a complex electroporation system designed to improve the targeting, effectiveness and control of electroporation treatments and serve to demonstrate the feasibility of developing new electroporation systems capable of adapting to changes in the preplanning of the treatment in real-time.

Originality/value

The work presents a thorough study of control method to multi-output multi-electrode electroporation system by mean of a rigorous numerical simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2017

Oscar Lucia, Hector Sarnago and José M. Burdio

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction…

Abstract

Purpose

Wide-bandgap (WBG) semiconductors have emerged as a disruptive technology in the power electronics sphere. This paper aims to analyse and discuss the importance for induction heating systems and gives some examples and highlights some future design trends and perspectives.

Design/methodology/approach

The benefits of WBG semiconductors are reviewed with a special emphasis on induction heating applications.

Findings

WBG devices enable the design of higher-performance induction heating power supplies. A significant selection of the reported converters is discussed, highlighting the benefits of this technology.

Originality/value

This paper highlights the benefits of WBG semiconductors and their potential to change and improve induction heating technology in the next years.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2011

Claudio Carretero, Óscar Lucía, Jesús Acero, Rafael Alonso and José M. Burdío

The aim of this paper is to propose a design procedure based on the impedance boundary condition in order to simplify the design of inductors for domestic induction heating…

Abstract

Purpose

The aim of this paper is to propose a design procedure based on the impedance boundary condition in order to simplify the design of inductors for domestic induction heating systems.

Design/methodology/approach

An electromagnetic description of the inductor system is performed to substitute the effects of a component, named system load, for a mathematical condition, the so‐called impedance boundary condition. This is suitable to be used in electromagnetic systems involving high conductive materials at medium frequencies, as it occurs in an induction heating system. Applying this approach, a simplified electrical model arises from the general system.

Findings

A considerable reduction in the efforts devoted to design a coil for induction heating purposes is achieved, because the solution considering the variation of three physical parameters are projected to a one‐dimensional space only depending on a single parameter named corrected penetration depth. This proposal assesses the working conditions of standard induction systems.

Practical implications

This work is performed to achieve a better understanding of the fundamentals involved in the electromagnetic modeling of an induction heating system. The main goal is the definition of a better coil design process because it is probably the most time‐consuming task in the construction of a complete induction system.

Originality/value

In this paper, the so‐called corrected penetration depth is defined. This single parameter allows explaining the influence of the physical parameter of the inductor load and the excitation frequency in the equivalent of the complete inductor system. The numerical results carried out considering the corrected penetration depth instead of the physical load properties have been validated experimentally.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 5 of 5