Search results

1 – 2 of 2
Article
Publication date: 1 March 2023

Yuzhen Zhao, Mingxu Zhao, Huimin Zhang, Xiangrong Zhao, Yang Zhao, Zhun Guo, Jianjing Gao, Cheng Ma and Yongming Zhang

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Abstract

Purpose

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Design/methodology/approach

A series of novel symmetric and asymmetric compounds possessing third-order NLO properties were synthesized using 1,3,5-tribromobenzene as the basis. The photophysical and electrochemical properties, as well as the click reactions, were characterized by means of UV–VIS–NIR absorption spectroscopy and cyclic voltammetry.

Findings

The donor–acceptor chromophores were inserted into compound, making the molecule to have a broader absorption in the near-infrared regions and a narrower optical and electrochemical band gap. It also formed an electron-delocalized organic system, which has larger effects on achieving a third-order NLO response. The third-order NLO phenomenon of benzene ring complexes was experimentally studied at 532 nm using Z-scan technology, and some compounds showed the expected NLO properties.

Originality/value

The click products exhibit more NLO phenomena by performing different click combinations to the side groups, opening new perspectives on using the system in a variety of photoelectric applications.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 October 2019

Lisha He, Jianjing Zheng, Yao Zheng, Jianjun Chen, Xuan Zhou and Zhoufang Xiao

The purpose of this paper is to develop parallel algorithms for moving boundary simulations by local remeshing and compose them to a fully parallel simulation cycle for the…

Abstract

Purpose

The purpose of this paper is to develop parallel algorithms for moving boundary simulations by local remeshing and compose them to a fully parallel simulation cycle for the solution of problems with engineering interests.

Design/methodology/approach

The moving boundary problems are solved by unsteady flow computations coupled with six-degrees-of-freedom equations of rigid body motion. Parallel algorithms are developed for both computational fluid dynamics (CFD) solution and grid deformation steps. Meanwhile, a novel approach is developed for the parallelization of the local remeshing step. It inputs a distributed mesh after deformation, then marks low-quality elements to be deleted on the respective processors. After that, a parallel domain decomposition approach is used to repartition the hole mesh and then to redistribute the resulting sub-meshes onto all available processors. Then remesh individual sub-holes in parallel. Finally, the element redistribution is rebalanced.

Findings

If the CFD solver is parallelized while the remaining steps are executed in sequential, the performance bottleneck of such a simulation cycle is observed when the simulation of large-scale problem is executed. The developed parallel simulation cycle, in which all of time-consuming steps have been efficiently parallelized, could overcome these bottlenecks, in terms of both memory consumption and computing efficiency.

Originality/value

A fully parallel approach for moving boundary simulations by local remeshing is developed to solve large-scale problems. In the algorithm level, a novel parallel local remeshing algorithm is present. It repartitions distributed hole elements evenly onto all available processors and ensures the generation of a well-shaped inter-hole boundary always. Therefore, the subsequent remeshing step can fix the inter-hole boundary involves no communications.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2