Search results

1 – 1 of 1
Article
Publication date: 26 July 2021

Deepinder Singh Wadhwa, Praveen Kumar Malik and Jaspal Singh Khinda

A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands…

Abstract

Purpose

A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands, suitable for futuristic communication systems.

Design/methodology/approach

Design consists of radiating patch and a partial ground plane with semi-circle arc for smooth flow of current. The lower corners of patch are gradually clipped away to make the patch nearly elliptical. Further, two tilted slots at an angle α = 15° are etched at the edges of the patch to augment bandwidth for mm-wave range. These slots divert the periphery current of semi elliptical patch towards center portion of antenna which ensures the participation in radiation of central portion of patch. The upper corners are also clipped away to limit the copper losses and smoothly flow of current. The proposed antenna is designed using HFSS and it is structured on inexpensive FR4 substrate of size 27.5 × 20 mm2.

Findings

It supports enormous −10 dB bandwidth of 5.86–40GHz (148.89%) even though use of high loss-tangent material and high gain for 28 GHz (27.50–28.35 GHz) n261–band and 37 GHz (37–38.6 GHz) and 39 GHz (38.6–40GHz) n260–bands with a peak-gain of 8.76 dBi, 10.8 dBi and 9.92 dBi, respectively.

Originality/value

The proposed methodology of design is very useful to enhance impedance bandwidth to cover all C–, X–, Ku–, K– and Ka–band even though use of low cost material with high loss tangent. In recent literature, the designs were implemented with a costly material and having very low loss tangent and covers partial suggest bands.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 1 of 1