Search results

1 – 2 of 2
Article
Publication date: 8 June 2021

Linlin Zhang and Haitian Yang

This paper attempts to develop an efficient algorithm to solve the inverse problem of identifying constitutive parameters in VFG (viscoelastic functionally graded…

Abstract

Purpose

This paper attempts to develop an efficient algorithm to solve the inverse problem of identifying constitutive parameters in VFG (viscoelastic functionally graded) materials/structures.

Design/methodology/approach

An adaptive recursive algorithm with high fidelity is developed to acquire the derivatives of displacements with respect to constitutive parameters, which are required for the accurate and stable gradient based inverse analysis. A two-step strategy is presented in the process of identification, by which the unknown parameters can be separately identified and the scale and complexity of the inverse VFG problem are reduced. At each step, the process of identification is treated as an optimization problem that is solved by the Levenberg–Marquardt method.

Findings

The solution accuracy of forward problems and derivatives of displacements can be stably achieved with different step sizes, and constitutive parameters of homogenous/regional-inhomogeneous VFG materials/structures can be effectively and accurately identified. By examining the reliability, resolution, impacts of reference information and noisy data, the effectiveness of the proposed approach is numerically verified via three numerical examples.

Originality/value

An adaptive recursive algorithm is developed for derivatives computing with high fidelity, providing a solid platform for the sensitivity analysis and thereby a two-step strategy in conjunction with Levenberg–Marquardt method is presented in the process of identification. Consequently, an effective algorithm is developed to identify constitutive parameters of homogenous/regional-inhomogeneous VFG materials/structures.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

W.X. Zhang, R.G. Liu and Y. Bai

For general quasi-static problems of viscoelastic functionally graded materials (VFGMs), the correspondence principle can be applied only for simple structures with a closed form…

Abstract

Purpose

For general quasi-static problems of viscoelastic functionally graded materials (VFGMs), the correspondence principle can be applied only for simple structures with a closed form solution of the corresponding elastic problem exists. In this paper, a new symplectic approach, according to the correspondence principle between linearly elastic and viscoelastic solids, is proposed for quasi-static VFGMs.

Design/methodology/approach

Firstly, by employing the method of separation of variables, all the fundamental eigenvectors of the governing equations are obtained analytically. Then, the satisfactions of boundary conditions prescribed on the ends and laterals are discussed based on the variable substitution and the eigenvector expansion methods.

Findings

In the numerical examples, some boundary condition problems are given. The results show the local effects due to the displacement constraints.

Originality/value

The paper provides an innovative technique for quasi-static problems of VFG Ms. Its correctness and the efficiency are well suported by numerical results.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2