Search results

11 – 20 of 115
Article
Publication date: 2 March 2012

Mads Hvilshøj, Simon Bøgh, Oluf Skov Nielsen and Ole Madsen

The purpose of this paper is to provide a review of the interdisciplinary research field, autonomous industrial mobile manipulation (AIMM), with an emphasis on physical…

2112

Abstract

Purpose

The purpose of this paper is to provide a review of the interdisciplinary research field, autonomous industrial mobile manipulation (AIMM), with an emphasis on physical implementations and applications.

Design/methodology/approach

Following an introduction to AIMM, this paper investigates the missing links and gaps between the research and developments efforts and the real‐world application requirements, in order to bring the AIMM technology from laboratories to manufacturing environments. The investigation is based on 12 general application requirements for robotics: sustainability, configuration, adaptation, autonomy, positioning, manipulation and grasping, robot‐robot interaction, human‐robot interaction, process quality, dependability, and physical properties.

Findings

The concise yet comprehensive review provides both researchers (academia) and practitioners (industry) with a quick and gentle overview of AIMM. Furthermore, the paper identifies key open issues and promising research directions to realize real‐world integration and maturation of the AIMM technology.

Originality/value

This paper reviews the interdisciplinary research field, autonomous industrial mobile manipulation (AIMM).

Details

Industrial Robot: An International Journal, vol. 39 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 2000

Fabrizio Caccavale and Pasquale Chiacchio

Describes the experience of setting up a cooperative arm system based on individual open‐architecture controllers. Two six‐degree‐of‐freedom industrial manipulators, one of which…

Abstract

Describes the experience of setting up a cooperative arm system based on individual open‐architecture controllers. Two six‐degree‐of‐freedom industrial manipulators, one of which is mounted on a moving track, are installed to realize a cooperative experimental set‐up. The main issues related to the cooperative manipulation are overviewed and its potential applications in industry are discussed. A brief description of the system’s components is given. The most relevant problems encountered in setting up the cooperative system based on individual control architectures are detailed. The result of the experience is that by using available industrial manipulators, rather than prototypes, and without re‐designing the controller hardware, it is possible to realize a cooperative manipulator system.

Details

Industrial Robot: An International Journal, vol. 27 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 November 2002

N. Boubekri and Pinaki Chakraborty

The application of robots to industrial problems often requires grasping and manipulation of the work piece. The robot is able to perform a task adequately only when it is…

3357

Abstract

The application of robots to industrial problems often requires grasping and manipulation of the work piece. The robot is able to perform a task adequately only when it is assigned proper tooling and adequate methods of grasping and handling work pieces. The design of such a task requires an in‐depth knowledge of several interrelated subjects including: gripper design, force, position, stiffness and compliance control and grasp configurations. In this paper, we review the research finding on these subjects in order to present in a concise manner, which can be easily accessed by the designers of robot task, the information reported by the researchers, and identify based on the review, future research directions in these areas.

Details

Integrated Manufacturing Systems, vol. 13 no. 7
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 1 June 2005

Javad Dargahi and Siamak Najarian

Reviews the benefits and potential application of tactile sensors for use with robots.

4496

Abstract

Purpose

Reviews the benefits and potential application of tactile sensors for use with robots.

Design/methodology/approach

Includes the most recent advances in both the design/manufacturing of various tactile sensors and their applications in different industries. Although these types of sensors have been adopted in a considerable number of areas, the applications such as, medical, agricultural/livestock and food, grippers/manipulators design, prosthetic, and environmental studies have gained more popularity and are presented in this paper.

Findings

Robots can perform very useful and repetitive tasks in controlled environments. However, when the robots are required to handle the unstructured and changing environments, there is a need for more elaborate means to improve their performance. In this scenario, tactile sensors can play a major role. In the unstructured environments, the robots must be able to grasp objects (or tissues, in the case of medical robots) and move objects from one location to another.

Originality/value

In this work, the emphasis was on the most interesting and fast developing areas of the tactile sensors applications, including, medical, agriculture and food, grippers and manipulators design, prosthetic, and environmental studies.

Details

Industrial Robot: An International Journal, vol. 32 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 May 2020

Azamat Nurlanovich Yeshmukhametov, Koichi Koganezawa, Zholdas Buribayev, Yedilkhan Amirgaliyev and Yoshio Yamamoto

The purpose of this paper is to present a novel hybrid pre-tension mechanism for continuum manipulators to prevent wire slack and improve continuum robot payload capacity, as well…

540

Abstract

Purpose

The purpose of this paper is to present a novel hybrid pre-tension mechanism for continuum manipulators to prevent wire slack and improve continuum robot payload capacity, as well as to present a new method to control continuum manipulators’ shape.

Design/methodology/approach

This research explains the hardware design of a hybrid pre-tension mechanism device and proposes a mathematic formulation wire-tension based on robot design. Also, the wire-tension control method and payload estimation model would be discussed.

Findings

Wire-tension is directly related to the continuum manipulators’ rigidity and accuracy. However, in the case of robot motion, wires lose their tension and such an issue leads to the inaccuracy and twist deformation. Therefore, the proposed design assists in preventing any wire slack and derailing the problem of the wires.

Originality/value

The novelty of this research is proposed pre-tension mechanism device design and control schematics. Proposed pre-tension mechanism designed to maintain up to eight wires simultaneously.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 March 2016

Alberto Brunete, Carlos Mateo, Ernesto Gambao, Miguel Hernando, Jukka Koskinen, Jari M Ahola, Tuomas Seppälä and Tapio Heikkila

This paper aims to propose a new technique for programming robotized machining tasks based on intuitive human–machine interaction. This will enable operators to create robot…

Abstract

Purpose

This paper aims to propose a new technique for programming robotized machining tasks based on intuitive human–machine interaction. This will enable operators to create robot programs for small-batch production in a fast and easy way, reducing the required time to accomplish the programming tasks.

Design/methodology/approach

This technique makes use of online walk-through path guidance using an external force/torque sensor, and simple and intuitive visual programming, by a demonstration method and symbolic task-level programming.

Findings

Thanks to this technique, the operator can easily program robots without learning every robot-specific language and can design new tasks for industrial robots based on manual guidance.

Originality/value

The main contribution of the paper is a new procedure to program machining tasks based on manual guidance (walk-through teaching method) and user-friendly visual programming. Up to now, the acquisition of paths and the task programming were done in separate steps and in separate machines. The authors propose a procedure for using a tablet as the only user interface to acquire paths and to make a program to use this path for machining tasks.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 1993

Robert J. Stone

Virtual Reality (VR) refers to the computer generation of realistic three‐dimensional artificial worlds in which humans, typically equipped with head‐mounted 3D displays…

Abstract

Virtual Reality (VR) refers to the computer generation of realistic three‐dimensional artificial worlds in which humans, typically equipped with head‐mounted 3D displays, interactive gloves and even whole‐body suits, can be ‘immersed’, and are free to explore and interact with graphical objects in real time, using such natural skills as looking from different angles, moving, pointing, grasping, listening and talking. The early history behind the emergence of VR is short and incredibly intense and characterized by a small group of familiar names. As one of the key figures, Myron Krueger has described it, ‘…Like particles in a fission reaction, personnel from one project disband and reappear with new affiliations’. That reaction continues today, with a reproduction of the American experience in Europe.

Details

Aslib Proceedings, vol. 45 no. 6
Type: Research Article
ISSN: 0001-253X

Article
Publication date: 1 March 1961

IN every decade some word is thrown to the surface of men's minds and proves powerful enough to colour and condition their thinking. At present the word is automation. We see it…

Abstract

IN every decade some word is thrown to the surface of men's minds and proves powerful enough to colour and condition their thinking. At present the word is automation. We see it as the crucible to resolve all our production problems, the formula to express our hopes for the future.

Details

Work Study, vol. 10 no. 3
Type: Research Article
ISSN: 0043-8022

Open Access
Article
Publication date: 7 August 2017

Chunlin Zhou, Huifeng Wu, Xiang Xu, Yong Liu, Qi Zhu and Shuwen Pan

The purpose of this paper is to propose a robotic system for percutaneous surgery. The key component in the system, a robotic arm that can manipulate a puncture needle is…

4447

Abstract

Purpose

The purpose of this paper is to propose a robotic system for percutaneous surgery. The key component in the system, a robotic arm that can manipulate a puncture needle is presented. The mechanical design, the motion control and the force control method of the robotic arm are discussed in the paper.

Design/methodology/approach

The arm with an arc mechanism placed on a 3D Cartesian stage is developed as a puncture needle manipulator to locate the position of the needle tip, tune the needle’s posture and actuate the puncture motion under the visual guidance of two orthogonal X-ray images of a patient by a surgeon. A focusing method by using two laser spots is proposed to automatically move the needle tip to a surgery entry point on the skin. A dynamics model is developed to control the position of the needle mechanism and an explicit force control strategy is utilized to perform the needle insertion.

Findings

With the surgical system, a surgeon can easily perform puncture operation by taking two orthogonal real-time X-ray images as a visual feedback and accurately navigating the needle insertion. The laser-guided focusing method is efficient in placement of the needle tip. The explicit force control strategy is proved to be effective for holding constant and stable puncture force in experiments.

Originality/value

The robotic arm has an advantage in easy redirection of the needle because the rotation and the translation are decoupled in the mechanism. By adopting simple laser pens and a well-developed kinematics model, the system can handle the entry point, locating task automatically. The focusing method and the force control method proposed in the paper are useful for the present system and could be intuitive for similar surgical robots.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 August 2017

Weibang Bai, Qixin Cao, Pengfei Wang, Peng Chen, Chuntao Leng and Tiewen Pan

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development…

Abstract

Purpose

Robotic systems for laparoscopic minimally invasive surgery (MIS) always end up with highly sophisticated mechanisms and control schemes – making it a long and hard development process with a steep price. This paper aims to propose and realize a new, efficient and convenient strategy for building effective control systems for surgical and even other complex robotic systems.

Design/methodology/approach

A novel method that takes advantage of the modularization concept by integrating two middleware technologies (robot operating system and robotic technology middleware) into a common architecture based on the strengths of both was designed and developed.

Findings

Tests of the developed control system showed very low time-delay between the master and slave sides; good movement representation on the slave manipulator; and high positional and operational accuracy. Moreover, the new development strategy trial came with much higher efficiency and lower costs.

Research limitations/implications

This method results in a modularized and distributed control system that is amenable to collaboratively develop; convenient to modify and update; componentized and easy to extend; mutually independent among subsystems; and practicable to be running and communicating across multiple operating systems. However, experiments show that surgical training and updates of the robotic system are still required to achieve better proficiency for completing complex minimally invasive surgical operations with the proposed and developed system.

Originality/value

This research proposed and developed a novel modularization design method and a novel architecture for building a distributed teleoperation control system for laparoscopic MIS.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

11 – 20 of 115