Search results

1 – 4 of 4
Article
Publication date: 31 October 2018

Chung-Han Ho, Ping-Teng Chang, Kuo-Chen Hung and Kuo-Ping Lin

The purpose of this paper is to develop a novel intuitionistic fuzzy seasonality regression (IFSR) with particle swarm optimization (PSO) algorithms to accurately forecast air…

Abstract

Purpose

The purpose of this paper is to develop a novel intuitionistic fuzzy seasonality regression (IFSR) with particle swarm optimization (PSO) algorithms to accurately forecast air pollutions, which are typical seasonal time series data. Seasonal time series prediction is a critical topic, and some time series data contain uncertain or unpredictable factors. To handle such seasonal factors and uncertain forecasting seasonal time series data, the proposed IFSR with the PSO method effectively extends the intuitionistic fuzzy linear regression (IFLR).

Design/methodology/approach

The prediction model sets up IFLR with spreads unrestricted so as to correctly approach the trend of seasonal time series data when the decomposition method is used. PSO algorithms were simultaneously employed to select the parameters of the IFSR model. In this study, IFSR with the PSO method was first compared with fuzzy seasonality regression, providing evidence that the concept of the intuitionistic fuzzy set can improve performance in forecasting the daily concentration of carbon monoxide (CO). Furthermore, the risk management system also implemented is based on the forecasting results for decision-maker.

Findings

Seasonal autoregressive integrated moving average and deep belief network were then employed as comparative models for forecasting the daily concentration of CO. The empirical results of the proposed IFSR with PSO model revealed improved performance regarding forecasting accuracy, compared with the other methods.

Originality/value

This study presents IFSR with PSO to accurately forecast air pollutions. The proposed IFSR with PSO model can efficiently provide credible values of prediction for seasonal time series data in uncertain environments.

Details

Industrial Management & Data Systems, vol. 119 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Book part
Publication date: 4 April 2024

Ramin Rostamkhani and Thurasamy Ramayah

This chapter of the book aims to introduce multiobjective linear programming (MLP) as an optimum tool to find the best quality engineering techniques (QET) in the main domains of…

Abstract

This chapter of the book aims to introduce multiobjective linear programming (MLP) as an optimum tool to find the best quality engineering techniques (QET) in the main domains of supply chain management (SCM). The importance of finding the best quality techniques in SCM elements in the shortest possible time and at the least cost allows all organizations to increase the power of experts’ analysis in supply chain network (SCN) data under cost-effective conditions. In other words, this chapter aims to introduce an operations research model by presenting MLP for obtaining the best QET in the main domains of SCM. MLP is one of the most determinative tools in this chapter that can provide a competitive advantage. Under goal and system constraints, the most challenging task for decision-makers (DMs) is to decide which components to fund and at what levels. The definition of a comprehensive target value among the required goals and determining system constraints is the strength of this chapter. Therefore, this chapter can guide the readers to extract the best statistical and non-statistical techniques with the application of an operations research model through MLP in supply chain elements and shows a new innovation of the effective application of operations research approach in this field. The analytic hierarchy process (AHP) is a supplemental tool in this chapter to facilitate the relevant decision-making process.

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Keywords

Article
Publication date: 20 February 2020

Ricardo Felicio Souza, Peter Wanke and Henrique Correa

This study aims to analyze the performance of four different fuzzy inference system-based forecasting tools using a real case company.

610

Abstract

Purpose

This study aims to analyze the performance of four different fuzzy inference system-based forecasting tools using a real case company.

Design/methodology/approach

The forecasting tools were tested using 27 products of the nail polish line of a multinational beauty company and the performance of said tools was compared to those of the company’s previous forecasting methods that were basically qualitative (informal and intuition-based).

Findings

The performance of the methods analyzed was compared by using mean absolute percentage error. It was possible to determine the characteristics and conditions that make each model the best for each situation. The main takeaways were that low kurtosis, negatively skewed demand time-series and longer horizon forecasts that favor the fuzzy inference system-based models. Besides, the results suggest that the fuzzy forecasting tools should be preferred for longer horizon forecasts over informal qualitative methods.

Originality/value

Notwithstanding the proposed hybrid modeling approach based on fuzzy inference systems, our research offers a relevant contribution to theory and practice by shedding light on the segmentation and selection of forecasting models, both in terms of time-series characteristics and forecasting horizon. The proposed fuzzy inference systems showed to be particularly useful not only when time-series distributions present no clear central tendency (that is, they are platykurtic or dispersed around a large plateau around the median, which is the characteristic of negative kurtosis), but also when mode values are greater than median values, which in turn are greater than mean values. This large tail to the left (negative skewness) is typical of successful products whose sales are ramping up in early stages of their life cycle. For these, fuzzy inference systems may help managers screen out forecast bias and, therefore, lower forecast errors. This behavior also occurs when managers deal with forecasts of longer horizons. The results suggest that further research on fuzzy inference systems hybrid approaches for forecasting should emphasize short-term forecasting by trying to better capture the “tribal” managerial knowledge instead of focusing on less dispersed and slower moving products, where the purely qualitative forecasting methods used by managers tend to perform better in terms of their accuracy.

Details

Journal of Modelling in Management, vol. 15 no. 4
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 19 July 2022

Yaping Zhao, Xiangtianrui Kong, Xiaoyun Xu and Endong Xu

Cycle time reduction is important for order fulling process but often subject to resource constraints. This study considers an unrelated parallel machine environment where orders…

Abstract

Purpose

Cycle time reduction is important for order fulling process but often subject to resource constraints. This study considers an unrelated parallel machine environment where orders with random demands arrive dynamically. Processing speeds are controlled by resource allocation and subject to diminishing marginal returns. The objective is to minimize long-run expected order cycle time via order schedule and resource allocation decisions.

Design/methodology/approach

A stochastic optimization algorithm named CAP is proposed based on particle swarm optimization framework. It takes advantage of derived bound information to improve local search efficiency. Parameter impacts including demand variance, product type number, machine speed and resource coefficient are also analyzed through theoretic studies. The algorithm is evaluated and benchmarked with four well-known algorithms via extensive numerical experiments.

Findings

First, cycle time can be significantly improved when demand randomness is reduced via better forecasting. Second, achieving processing balance should be of top priority when considering resource allocation. Third, given marginal returns on resource consumption, it is advisable to allocate more resources to resource-sensitive machines.

Originality/value

A novel PSO-based optimization algorithm is proposed to jointly optimize order schedule and resource allocation decisions in a dynamic environment with random demands and stochastic arrivals. A general quadratic resource consumption function is adopted to better capture diminishing marginal returns.

Details

Industrial Management & Data Systems, vol. 122 no. 8
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 4 of 4