Search results

1 – 10 of 50
Article
Publication date: 9 January 2024

Kathiravan Balusamy, Vinothraj A. and Suresh V.

The purpose of this study is to explore the effects of aerospike and hemispherical aerodisks on flow characteristics and drag reduction in supersonic flow over a blunt body…

Abstract

Purpose

The purpose of this study is to explore the effects of aerospike and hemispherical aerodisks on flow characteristics and drag reduction in supersonic flow over a blunt body. Specifically, the study aims to analyze the impact of varying the length of the cylindrical rod in the aerospike (ranging from 0.5 to 2.0 times the diameter of the blunt body) and the diameter of the hemispherical disk (ranging from 0.25 to 0.75 times the blunt body diameter). CFD simulations were conducted at a supersonic Mach number of 2 and a Reynolds number of 2.79 × 106.

Design/methodology/approach

ICEM CFD and ANSYS CFX solver were used to generate the three-dimensional flow along with its structures. The flow structure and drag coefficient were computed using Reynolds-averaged Navier–Stokes equation model. The drag reduction mechanism was also explained using the idea of dividing streamline and density contour. The performance of the aero spike length and the effect of aero disk size on the drag are investigated.

Findings

The separating shock is located in front of the blunt body, forming an effective conical shape that reduces the pressure drag acting on the blunt body. It was observed that extending the length of the spike beyond a specific critical point did not impact the flow field characteristics and had no further influence on the enhanced performance. The optimal combination of disk and spike length was determined, resulting in a substantial reduction in drag through the introduction of the aerospike and disk.

Research limitations/implications

To predict the accurate results of drag and to reduce the simulation time, a hexa grid with finer mesh structure was adopted in the simulation.

Practical implications

The blunt nose structures are primarily employed in the design of rockets, missiles, and re-entry capsules to withstand higher aerodynamic loads and aerodynamic heating.

Originality/value

For the optimized size of the aero spike, aero disk is also optimized to use the benefits of both.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 August 2023

Mohammadsadegh Pahlavanzadeh, Krzysztof Rusin and Wlodzimierz Wróblewski

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of…

Abstract

Purpose

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of the flow through the gap, which forms a minichannel with variable cross sections and rotating walls, makes it a complex problem and, therefore, worth discussing in more detail.

Design/methodology/approach

Two roughness models were examined, the first one was based on the wall function modification by application of the shift in the dimensionless velocity profile, and the second one was based on the correction of turbulence parameters at the wall, proposed by Aupoix. Due to the lack of data to validate that specific case, the approach to deal with was selected after a systematic study of reported test cases. It started with a zero-pressure-gradient boundary layer in the flow over a flat plate, continued with flow through minichannels with stationary walls, and finally, focused on the flow between corotating discs, pertaining each time to smooth and rough surfaces.

Findings

The limitations of the roughness models were highlighted, which make the models not reliable in the application to minichannel flows. It concerns turbulence models, near-wall discretization and roughness approaches. Aupoix’s method to account for roughness was selected, and the influence of minichannel height, mass flow rate, fluid properties and roughness height on the velocity profile between corotating discs in both smooth and rough cases was discussed.

Originality/value

The originality of this study is the evaluation and validation of different methods to account for the roughness in rotating mini channels, where the protrusions can cover a substantial part of the channel. Flow behavior and performance of different turbulence models were analyzed as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 16 August 2023

Lucilla Coelho de Almeida, Joao Americo Aguirre Oliveira Junior and Jian Su

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to…

Abstract

Purpose

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to predict flow and heat transfer in fluidized beds of thermally thick spherical particles.

Design/methodology/approach

An improved lumped formulation based on Hermite-type approximations for integrals to relate surface temperature to average temperature and surface heat flux is used to overcome the limitations of classical lumped models. The model is validated through comparisons with analytical solutions for a convectively cooled sphere and experimental data for a fixed particle bed. The coupled CFD-DEM model is then applied to simulate a Geldart D bubbling fluidized bed, comparing the results to those obtained using the classical lumped model.

Findings

The validation cases demonstrate that ignoring internal thermal resistance can significantly impact the temperature in cases where the Biot number is greater than 0.1. The results for the fixed bed case clearly demonstrate that the proposed method yields significantly improved outcomes compared to the classical model. The fluidized bed results show that surface temperature can deviate considerably from the average temperature, underscoring the importance of accurately accounting for surface temperature in convective heat transfer predictions and surface processes.

Originality/value

The proposed approach offers a physically more consistent simulation without imposing a significant increase in computational cost. The improved lumped formulation can be easily and inexpensively integrated into a typical DEM solver workflow to predict heat transfer for spherical particles, with important implications for various industrial applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

38

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 December 2023

Christoph Emanuel Mueller

In a recent quasi-experimental study, the effects of a large German public startup support measure entitled “EXIST – Business Startup Grant” (EGS) on a variety of outcomes were…

Abstract

Purpose

In a recent quasi-experimental study, the effects of a large German public startup support measure entitled “EXIST – Business Startup Grant” (EGS) on a variety of outcomes were determined, but without examining which factors are responsible for these program effects. The present study investigates the contribution of several factors to the success of the program in promoting product development and business planning.

Design/methodology/approach

By means of a two-wave panel design and fixed-effects panel regressions, evidence is generated that provides unique insights into the effect mechanisms of a publicly funded startup grant. The data for the study come from the program monitoring of the startup support measure.

Findings

Several factors were identified that significantly drive the effects of the program on the product development and business planning stages, namely the program-induced improvement of the skills of the startup team, intensification of cooperation with pilot customers/users, increase in the degree of networking and advice/support from third parties and the effort put into business plan preparation.

Originality/value

Startup support programs are a crucial aspect of technology and innovation policies, which are often evaluated in order to find out whether they generate effects. Assessing whether a program is effective or not, however, does not usually allow specific recommendations on how to improve the measure to be developed. Further information on the mechanisms of intervention is needed for this purpose. The present study takes up on this idea and provides this information for a specific type of public startup support measure.

Details

Journal of Entrepreneurship and Public Policy, vol. 13 no. 1
Type: Research Article
ISSN: 2045-2101

Keywords

Article
Publication date: 16 January 2024

Mohamed Abd Alsamieh

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of…

Abstract

Purpose

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of frequency, stroke length and load on film thickness and pressure variation during one operating cycle are discussed. The general tribological behavior of elastohydrodynamic lubrication during reciprocating motion is explained.

Design/methodology/approach

The system of equations of Reynolds, film thickness considering surface deformation and load balance equations are solved using the Newton-Raphson technique with the Gauss-Seidel iteration method. Numerical solutions were performed with a sinusoidal contact surface velocity to simulate reciprocating elastohydrodynamics. The methodology is validated using historical experimental measurements/observations and numerical predictions from other researchers.

Findings

The numerical results showed that the change in oil film during a stroke is controlled by both wedge and squeeze effects. When the surface velocity is zero at the stroke end, the squeeze effect is most noticeable. As the frequency increases, the general trend of central and minimum film thickness increases. With the same entraining speed but different stroke lengths, the properties of the oil film differ from one another, with an increase in stroke length leading to a reduction in film thickness. Finally, the numerical results showed that the overall film thickness decreases with increasing load.

Originality/value

General tribological behaviors of elastohydrodynamic lubricating point contact, represented by pressure and film thickness variations over time and profiles, are analyzed under reciprocating motion during one working cycle to show the effects of frequency, stroke length and applied load.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 1 November 2023

Hamed Abdelreheem Ead

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry…

Abstract

Purpose

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry, biology, math, geology, astronomy and engineering. The paper highlights the struggles and successes of these scientists, as well as the cultural, social and political factors that influenced their lives and work. The aim is to inspire young people to pursue careers in science and make their own contributions to society by presenting these scientists as role models for hard work and dedication. Ultimately, the paper seeks to promote the importance of science and its impact on society.

Design/methodology/approach

The purpose of this review is to present the scientific biographies of Egypt's most distinguished scientists, primarily in the field of Natural Sciences, in a balanced and comprehensive manner. The work is objective, honest and abstract, avoiding any bias or exaggeration. The author provides a clear and concise methodology, including a brief introduction to the scientist and their field of study, an explanation of their major contributions, the impact of their work on society, any challenges or obstacles faced during their career and their lasting legacy. The aim is to showcase the important achievements of these scientists, their impact on their respective fields and to inspire future generations to pursue scientific careers.

Findings

The group of outstanding scientists in 20th century Egypt were shaped by various factors, including familial upbringing, education, society, political and cultural atmosphere and state support for scientific research. These scientists made significant contributions to various academic disciplines, including medicine, physics, chemistry, biology, mathematics and engineering. Their impact on their communities and cultures has received international acclaim, making them role models for future generations of scientists and researchers. The history of these scientists highlights the importance of educational investments and supporting scientific research to foster innovation and social progress. The encyclopedia serves as a useful tool for students, instructors and education professionals, preserving Egypt's scientific heritage and honouring the scientists' outstanding accomplishments.

Research limitations/implications

The encyclopedia preserves Egypt's scientific heritage, which has been overlooked for political or other reasons. It is a useful tool for a variety of readers, including students, instructors and education professionals, and it offers insights into universally relevant scientific success factors as well as scientific research methodologies. The encyclopedia honours the outstanding scientific accomplishments of Egyptian researchers and their contributions to the world's scientific community.

Practical implications

The practical implications of this paper are several. First, it highlights the importance of education, family upbringing and societal support for scientific research in fostering innovation and social progress. Second, it underscores the need for continued funding and support for scientific research to maintain and build upon the accomplishments of past generations of scientists. Third, it encourages young people to pursue scientific careers and make their own contributions to society. Fourth, it preserves the scientific heritage of Egypt and honors the contributions of its outstanding scientists. Finally, it serves as a useful tool for students, instructors and education professionals seeking to understand the factors underlying scientific success and research methodologies.

Social implications

The social implications of the paper include promoting national pride and cultural identity, raising awareness of the importance of education and scientific research in driving social progress, inspiring future generations of scientists and researchers, reducing socioeconomic disparities and emphasizing the role of society, politics and culture in shaping scientific researchers' personalities and interests.

Originality/value

The paper's originality/value lies in its comprehensive documentation of the scientific biographies of Egypt's most prominent scientists in the 20th century, providing unique insights into the factors that contributed to their development and their impact across various academic disciplines. It preserves Egypt's scientific heritage and inspires future generations of scientists and researchers through the promotion of educational investments and scientific research. The encyclopedia serves as a useful tool for education professionals seeking to understand scientific success factors and research methodologies, emphasizing the importance of supportive and inclusive environments for scientific development.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 2
Type: Research Article
ISSN: 2632-279X

Keywords

1 – 10 of 50