Search results

1 – 10 of 551
Article
Publication date: 5 September 2024

Chinmaya Prasad Padhy, Suryakumar Simhambhatla and Debraj Bhattacharjee

This study aims to improve the mechanical properties of an object produced by fused deposition modelling with high-grade polymer.

Abstract

Purpose

This study aims to improve the mechanical properties of an object produced by fused deposition modelling with high-grade polymer.

Design/methodology/approach

The study uses an ensembled surrogate-assisted evolutionary algorithm (SAEA) to optimize the process parameters for example, layer height, print speed, print direction and nozzle temperature for enhancing the mechanical properties of temperature-sensitive high-grade polymer poly-ether-ether-ketone (PEEK) in fused deposition modelling (FDM) 3D printing while considering print time as one of the important parameter. These models are integrated with an evolutionary algorithm to efficiently explore parameter space. The optimized parameters from the SAEA approach are compared with those obtained using the Gray Relational Analysis (GRA) Taguchi method serving as a benchmark. Later, the study also highlights the significant role of print direction in optimizing the mechanical properties of FDM 3D printed PEEK.

Findings

With the use of ensemble learning-based SAEA, one can successfully maximize the ultimate stress and percentage elongation with minimum print time. SAEA-based solution has 28.86% higher ultimate stress, 66.95% lower percentage of elongation and 7.14% lower print time in comparison to the benchmark result (GRA Taguchi method). Also, the results from the experimental investigation indicate that the print direction has a greater role in deciding the optimum value of mechanical properties for FDM 3D printed high-grade thermoplastic PEEK polymer.

Research limitations/implications

This study is valid for the parameter ranges, which are defined to conduct the experimentation.

Practical implications

This study has been conducted on the basis of taking only a few important process parameters as per the literatures and available scope of the study; however, there are many other parameters, e.g. wall thickness, road width, print orientation, fill pattern, roller speed, retraction, etc. which can be included to make a more comprehensive investigation and accuracy of the results for practical implementation.

Originality/value

This study deploys a novel meta-model-based optimization approach for enhancing the mechanical properties of high-grade thermoplastic polymers, which is rarely available in the published literature in the research domain.

Article
Publication date: 2 September 2024

Faouzi Khedher and Boubaker Jaouachi

The purpose of this work is to study the relationship between the fabric’s mechanical properties such as tear strength (TS), breaking strength (BS) and cloth’s dimensional…

Abstract

Purpose

The purpose of this work is to study the relationship between the fabric’s mechanical properties such as tear strength (TS), breaking strength (BS) and cloth’s dimensional stability (Sh), particularly, after industrial launderings (stone wash, enzyme wash, mixed wash and rinse). Hence, we select the most interrelationships using the principal component analysis (PCA) technique. In this study, the treatments of finishing garments during washing are the important parameters influencing the cloth’s dimensional and the fabric’s mechanical properties. To improve the obtained results, the selected significant inputs are also analyzed within their influence on shrinkage. The polynomial regression model relating the tear strength and the shrinkage of denim fabric proves the effectiveness of the PCA method and the obtained findings.

Design/methodology/approach

To investigate the matter, the type of washing, and their contributions to shrinkage, four types of fabrics manufactured into pants were used. These fabrics differ not only by their basis weights (medium and heavy weight fabrics) but, also by their compositions (within and without elastane) and their thread count (warp and weft yarn count, twist and density. To evaluate significant results, a factorial design analysis based on an experimental design was established. The choice of these treatments, as well as their design mode, led us to make a complete factorial experimental design.

Findings

According to the results, the prediction of shrinkage behavior as a function of the process washing input parameters seems significant and useful in our experimental design of interest. As a consequence, it was also concluded that after these input parameters, we can find the relationship between the shrinkage (Shwarp and Shweft) and the mechanical properties such as tear strength (TSwarp and TSweft) and breaking strength (BSwarp and BSweft). Thanks to the PCA, it is very easy to reduce the number of the influent output parameters, and knowing these significant parameters, the prediction of mechanical properties knowing the shrinkage of denim garment, during the process of washing seems successful and can undoubtedly help industrial to minimize the poor workmanship of the finishing quality.

Practical implications

This study is very interesting for finishing denim garments. The shrinkage is very important for correcting measures in sewing, considering that a high shrinkage may cause the cancellation of the fit from the client. This type of defect cannot be repaired in the major part of the cases and causes a big loss for the company, moreover the mechanical properties. For this reason, analyzing the value of shrinkage before starting the production cycle is of great importance to apply the right balance to the pattern. The model of predicting the mechanical properties behaviors as a function of the shrinkage denim garment leads manufacturers to eliminate the test of mechanical properties that remain as destructive tests. Moreover, according to the results obtained, it may be concluded that prediction is still accurate through the shrinkage test which is an inevitable test. Even though, these results can bring a huge gain for the garment wash industries.

Originality/value

This work presents the first study predicting a relationship between the mechanical properties and denim garment shrinkage, applying the PCA technique to minimize the all-output parameters that are not significant or correlated with each other. Besides, it deals with the relationship developed between the fabric’s mechanical properties such as tear strength (TS), breaking strength (BS) and cloth’s dimensional stability (Sh), particularly, after industrial launderings (stone wash, enzyme wash, mixed wash and rinse). Moreover, it is notable to mention that the originality of this study is to let to the garment wash industries to save in production time of orders and also in quality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 September 2024

Yogesh Patil, Milind Akarte, K. P. Karunakaran, Ashik Kumar Patel, Yash G. Mittal, Gopal Dnyanba Gote, Avinash Kumar Mehta, Ronald Ely and Jitendra Shinde

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS…

Abstract

Purpose

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS) and Binder jetting three-dimensional printing (BJ3DP) are widely used for patternless sand mold and core production. This study aims to perform an in-depth literature review to understand the current status, determine research gaps and propose future research directions. In addition, obtain valuable insights into authors, organizations, countries, keywords, documents, sources and cited references, sources and authors.

Design/methodology/approach

This study followed the systematic literature review (SLR) to gather relevant rapid sand casting (RSC) documents via Scopus, Web of Science and EBSCO databases. Furthermore, bibliometrics was performed via the Visualization of Similarities (VOSviewer) software.

Findings

An evaluation of 116 documents focused primarily on commercial AM setups and process optimization of the SLS. Process optimization studies the effects of AM processes, their input parameters, scanning approaches, sand types and the integration of computer-aided design in AM on the properties of sample. The authors performed detailed bibliometrics of 80 out of 120 documents via VOSviewer software.

Research limitations/implications

This review focuses primarily on the SLS AM process.

Originality/value

A SLR and bibliometrics using VOSviewer software for patternless sand mold and core production via the AM process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 August 2024

Luis Lisandro Lopez Taborda, Heriberto Maury and Ivan E. Esparragoza

Additive manufacturing (AM) is growing economically because of its cost-effective design flexibility. However, it faces challenges such as interlaminar weaknesses and reduced…

Abstract

Purpose

Additive manufacturing (AM) is growing economically because of its cost-effective design flexibility. However, it faces challenges such as interlaminar weaknesses and reduced strength because of product anisotropy. Therefore, the purpose of this study is to develop a methodology that integrates design for additive manufacturing (AM) principles with fused filament fabrication (FFF) to address these challenges, thereby enhancing product reliability and strength.

Design/methodology/approach

Developed through case analysis and literature review, this methodology focuses on design methodology for AM (DFAM) principles applied to FFF for high mechanical performance applications. A DFAM database is constructed to identify common requirements and establish design rules, validated through a case study.

Findings

Existing DFAM approaches often lack failure theory integration, especially in FFF, emphasizing mechanical characterizations over predictive failure analysis in functional parts. This methodology addresses this gap by enhancing product reliability through failure prediction in high-performance FFF applications.

Originality/value

While some DFAM methods exist for high-performance FFF, they are often specific cases. Existing DFAM methodologies typically apply broadly across AM processes without a specific focus on failure theories in functional parts. This methodology integrates FFF with a failure theory approach to strengthen product reliability in high-performance applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 July 2024

Oğulcan Eren, Hüseyin Kürşad Sezer, Nurullah Yüksel, Ahmad Reshad Bakhtarı and Olcay Ersel Canyurt

This study aims to address the limited understanding of the complex correlations among strut size, structural orientation and process parameters in selective laser melting…

77

Abstract

Purpose

This study aims to address the limited understanding of the complex correlations among strut size, structural orientation and process parameters in selective laser melting (SLM)-fabricated lattice structures. By investigating the effects of crucial process parameters, strut diameter and angle on the microstructure and mechanical performance of AlSi10Mg struts, the research seeks to enhance the surface morphologies, microstructures and mechanical properties of AM lattice structures, enabling their application in various engineering fields, including medical science and space technologies.

Design/methodology/approach

This comprehensive study investigates SLM-fabricated AlSi10Mg strut structures, examining the effects of process parameters, strut diameter and angle on densification behavior and microstructural characteristics. By analyzing microstructure, geometrical properties, melt pool morphology and mechanical properties using optical microscopy, scanning electron microscope, energy dispersive X-ray spectroscopy and microhardness tests, the research addresses existing gaps in knowledge on fine lattice strut elements and their impact on surface morphology and microstructure.

Findings

The study revealed that laser energy, power density and strut inclination angle significantly impact the microstructure, geometrical properties and mechanical performance of SLM-produced AlSi10Mg struts. Findings insight enable the optimization of SLM process parameters to produce lattice structures with enhanced surface morphologies, microstructures and mechanical properties, paving the way for applications in medical science and space technologies.

Originality/value

This study uniquely investigates the effects of processing parameters, strut diameter and inclination angle on SLM-fabricated AlSi10Mg struts, focusing on fine lattice strut elements with diameters as small as 200 µm. Unlike existing literature, it delves into the complex correlations among strut size, structural orientation and process parameters to understand their impact on microstructure, geometrical imperfections and mechanical properties. The study provides novel insights that contribute to the optimization of SLM process parameters, moving beyond the typically recommended guidelines from powder or machine suppliers.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 September 2024

Sinan Obaidat, Mohammad Firas Tamimi, Ahmad Mumani and Basem Alkhaleel

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and…

Abstract

Purpose

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and American Society for Testing and Materials (ASTM) D638’s Types I and II test standards.

Design/methodology/approach

The prediction approach combines artificial neural network (ANN) and finite element analysis (FEA), Monte Carlo simulation (MCS) and experimental testing for estimating tensile behavior for FDM considering uncertainties of input parameters. FEA with variance-based sensitivity analysis is used to quantify the impacts of uncertain variables, resulting in determining the significant variables for use in the ANN model. ANN surrogates FEA models of ASTM D638’s Types I and II standards to assess their prediction capabilities using MCS. The developed model is applied for testing the tensile behavior of PLA given probabilistic variables of geometry and material properties.

Findings

The results demonstrate that Type I is more appropriate than Type II for predicting tensile behavior under uncertainty. With a training accuracy of 98% and proven presence of overfitting, the tensile behavior can be successfully modeled using predictive methods that consider the probabilistic nature of input parameters. The proposed approach is generic and can be used for other testing standards, input parameters, materials and response variables.

Originality/value

Using the proposed predictive approach, to the best of the authors’ knowledge, the tensile behavior of PLA is predicted for the first time considering uncertainties of input parameters. Also, incorporating global sensitivity analysis for determining the most contributing parameters influencing the tensile behavior has not yet been studied for FDM. The use of only significant variables for FEA, ANN and MCS minimizes the computational effort, allowing to simulate more runs with reduced number of variables within acceptable time.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 August 2024

Baris Kirim, Emrecan Soylemez, Evren Tan and Evren Yasa

This study aims to develop a novel thermal modeling strategy to simulate electron beam powder bed fusion at part scale with machine-varying process parameters strategy…

Abstract

Purpose

This study aims to develop a novel thermal modeling strategy to simulate electron beam powder bed fusion at part scale with machine-varying process parameters strategy. Single-bead and part-scale experiments and modeling were studied. Scanning strategies were described by the process controlling functions that enabled modeling.

Design/methodology/approach

The finite element analysis thermal model was used along with the powder bed fusion with electron beam experiments. The proposed strategy involves dividing a part into smaller sections and creating meso-scale models for each subsection. These meso-scale models take into consideration the variable process parameters, including power and velocity of the moving heat source, during part building. Subsequently, these models are integrated to perform partscale simulations, enabling more realistic predictions of thermal accumulation and resulting distortions. The model was built and validated with single-bead experiments and bulky parts with different features.

Findings

Single-bead experiments demonstrated an average error rate of 6%–24% for melt pool dimension prediction using the proposed meso-scale models with different scanning control functions. Part-scale simulations for three different geometries (cantilever beams with supports, bulk artifact and topology-optimized transfer arm) showed good agreement between modeled temperature changes and experimental deformation values.

Originality/value

This study presents a novel approach for electron beam powder bed fusion modeling that leverages meso-scale models to capture the influence of variable process parameters on part quality. This strategy offers improved accuracy for predicting part geometry and identifying potential defects, leading to a more efficient additive manufacturing process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 2024

Xiaoxian Yang, Zhifeng Wang, Qi Wang, Ke Wei, Kaiqi Zhang and Jiangang Shi

This study aims to adopt a systematic review approach to examine the existing literature on law and LLMs.It involves analyzing and synthesizing relevant research papers, reports…

Abstract

Purpose

This study aims to adopt a systematic review approach to examine the existing literature on law and LLMs.It involves analyzing and synthesizing relevant research papers, reports and scholarly articles that discuss the use of LLMs in the legal domain. The review encompasses various aspects, including an analysis of LLMs, legal natural language processing (NLP), model tuning techniques, data processing strategies and frameworks for addressing the challenges associated with legal question-and-answer (Q&A) systems. Additionally, the study explores potential applications and services that can benefit from the integration of LLMs in the field of intelligent justice.

Design/methodology/approach

This paper surveys the state-of-the-art research on law LLMs and their application in the field of intelligent justice. The study aims to identify the challenges associated with developing Q&A systems based on LLMs and explores potential directions for future research and development. The ultimate goal is to contribute to the advancement of intelligent justice by effectively leveraging LLMs.

Findings

To effectively apply a law LLM, systematic research on LLM, legal NLP and model adjustment technology is required.

Originality/value

This study contributes to the field of intelligent justice by providing a comprehensive review of the current state of research on law LLMs.

Details

International Journal of Web Information Systems, vol. 20 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 19 August 2024

Abdurrahim Temiz

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication…

Abstract

Purpose

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication (FFF) 3D printed structures. The project also intends to use response surface methodology (RSM) to maximize ultimate tensile strength (UTS) while lowering surface roughness and printing time.

Design/methodology/approach

This study used an FFF printer to fabricate samples of polylactic acid (PLA), which were then subjected to assessments of tensile strength and surface roughness. A tensile test was conducted under standardized conditions according to the ASTM D638 standard test method using the AG-50 kN Shimadzu Autograph. The Mitutoyo Surftest SJ-210, which utilizes a needle-tipped inductive method, was used to determine surface roughness. RSM was used for optimization.

Findings

This work provides useful insights into how the printing parameters affect FFF 3D printed structures, which may be used to optimize the printing process and improve PLA-based 3D printed products' qualities. The determined optimal values for building orientation, layer height and line width were 0°, 0.1 mm and 0.6 mm, respectively. The total desirability value of 0.80 implies desirable outcomes, and good agreement between experimental and projected response values supports the suggested models.

Originality/value

Previous RSM studies for 3D printing parameter optimization focused on mechanical properties or surface aspects, however, few examined multiple responses and their interactions. This study emphasizes the relevance of FFF parameters like line width, which are often overlooked but can dramatically impact printing quality. Mechanical properties, surface quality and printing time are integrated to comprehend optimization holistically.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 August 2024

S. Punitha and K. Devaki

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student…

Abstract

Purpose

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student performance is essential for educators to provide targeted support and guidance to students. By analyzing various factors like attendance, study habits, grades, and participation, teachers can gain insights into each student’s academic progress. This information helps them tailor their teaching methods to meet the individual needs of students, ensuring a more personalized and effective learning experience. By identifying patterns and trends in student performance, educators can intervene early to address any challenges and help students acrhieve their full potential. However, the complexity of human behavior and learning patterns makes it difficult to accurately forecast how a student will perform. Additionally, the availability and quality of data can vary, impacting the accuracy of predictions. Despite these obstacles, continuous improvement in data collection methods and the development of more robust predictive models can help address these challenges and enhance the accuracy and effectiveness of student performance predictions. However, the scalability of the existing models to different educational settings and student populations can be a hurdle. Ensuring that the models are adaptable and effective across diverse environments is crucial for their widespread use and impact. To implement a student’s performance-based learning recommendation scheme for predicting the student’s capabilities and suggesting better materials like papers, books, videos, and hyperlinks according to their needs. It enhances the performance of higher education.

Design/methodology/approach

Thus, a predictive approach for student achievement is presented using deep learning. At the beginning, the data is accumulated from the standard database. Next, the collected data undergoes a stage where features are carefully selected using the Modified Red Deer Algorithm (MRDA). After that, the selected features are given to the Deep Ensemble Networks (DEnsNet), in which techniques such as Gated Recurrent Unit (GRU), Deep Conditional Random Field (DCRF), and Residual Long Short-Term Memory (Res-LSTM) are utilized for predicting the student performance. In this case, the parameters within the DEnsNet network are finely tuned by the MRDA algorithm. Finally, the results from the DEnsNet network are obtained using a superior method that delivers the final prediction outcome. Following that, the Adaptive Generative Adversarial Network (AGAN) is introduced for recommender systems, with these parameters optimally selected using the MRDA algorithm. Lastly, the method for predicting student performance is evaluated numerically and compared to traditional methods to demonstrate the effectiveness of the proposed approach.

Findings

The accuracy of the developed model is 7.66%, 9.91%, 5.3%, and 3.53% more than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-1, and 7.18%, 7.54%, 5.43% and 3% enhanced than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-2.

Originality/value

The developed model recommends the appropriate learning materials within a short period to improve student’s learning ability.

1 – 10 of 551