Search results

1 – 6 of 6
Book part
Publication date: 11 December 2023

Marwa Ben Ali and Ghada Boukettaya

For decades, the fast population growth worldwide was interrelated with the adopted rapid lifestyle behavior that relies on the extensive use of fossil fuels. This primary energy…

Abstract

For decades, the fast population growth worldwide was interrelated with the adopted rapid lifestyle behavior that relies on the extensive use of fossil fuels. This primary energy source has caused various urban and environmental impacts, such as global warming, air pollution, and so forth. Consequently, the identified circumstance issues have caused many health, social, and economic hindering effects for global citizens. It poses an existential threat to humanity and the global earth's ecosystem. The alarming levels of urban pollution emissions are putting enormous challenges to the related stakeholders (governments, businesses, investors, automakers, and citizens) to admit the need to decarbonize the global economy and reach sustainable development goals (SDGs) for cleaner and smarter cities across borders. As such, a vital part of a smart city is the transport sector. The road transport sector, precisely, is one of the primary consumers of fossil fuels that contribute to high carbon dioxide emissions. Accordingly, it is essential to adopt novel and sustainable urban transport solutions and promote the achievement of the SDG's eleventh goal for sustainable cities and communities. This chapter provides insight into the present global energy situation with particular attention to the road transport sector. Indeed, it highlights different emerging technologies for a sustainable and smart urban mobility future that will mitigate the environmental situation thanks to the development of drive and internet telecommunication technologies. Furthermore, we aim in this chapter to study the international progress of the transition project using the Political, Economic, Social, Technological, Environmental, and Legal (PESTEL) analysis methodology. This study is to pinpoint opportunities for project development and the challenges that set back its evolution.

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2024

Shekwoyemi Gbako, Dimitrios Paraskevadakis, Jun Ren, Jin Wang and Zoran Radmilovic

Inland shipping has been extensively recognised as a sustainable, efficient and good alternative to rail and road modes of transportation. In recent years, various authorities and…

Abstract

Purpose

Inland shipping has been extensively recognised as a sustainable, efficient and good alternative to rail and road modes of transportation. In recent years, various authorities and academic researchers have advocated shifting from road to other sustainable modes like inland waterway transport (IWT) or rail transport. Academic work on modernisation and technological innovations to enhance the effectiveness and efficiency of waterborne transportation is becoming apparent as a growing body of literature caused by the need to achieve a sustainable transport system. Thus, it became apparent to explore the research trends on IWT.

Design/methodology/approach

A systematic and structured literature review study was employed in this paper to identify the challenges and concepts in modernising inland waterways for freight transportation. The review analysed 94 articles published in 54 journals from six well-known databases between 2010 and 2022.

Findings

The key findings of this review are that despite various challenges confronting the sector, there have been successful cases of technological advancement in the industry. The main interest among scholars is improving technical and economic performance, digitalisation, and safety and environmental issues. The review revealed that most of the literature is fragmented despite growing interest from practitioners and academic scholars. Academic research to address the strategic objectives, including strengthening competitiveness (shipbuilding, hydrodynamics, incorporating artificial intelligence into the decision-making process, adopting blockchain technology to ensure transparency and security in the transactions, new technologies for fleets adaptation to climate change, more effective handling, maintenance and rehabilitation technologies), matching growth and changing trade patterns (intermodal solutions and new logistics approaches) are major causes of concerns.

Originality/value

By employing the approach of reviewing previously available literature on IWT review papers, this review complements the existing body of literature in the field of IWT by providing in a single paper a consolidation of recent state-of-the-art research on technological developments and challenges for inland waterways freight transport in the intermodal supply chain that can act as a single resource to keep researchers up to date with the most recent advancements in research in the domain of inland waterway freight transport. Additionally, this review identified gaps in the literature that may inspire new research themes in the field of IWT.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 31 May 2022

Sutapa Mondal and Arup Kumar Nandi

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake…

Abstract

Purpose

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake pedal feel (BPF).

Design/methodology/approach

The conventional hydro-mechanical braking system is redesigned by incorporating a reversing linear solenoid (RLS) and allowed to work in parallel with a regenerative brake. A braking algorithm is proposed, and correspondingly, a control system is designed for the IPRBS for its proper functioning, and a mathematical model is formulated considering vehicle drive during braking. The effectiveness of IPRBS is studied by analyzing two aspects of regenerative braking (BPF and regenerative efficiency) and the impact of regenerative braking contribution to range extension and energy consumption reduction under European Union Urban Driving Cycle (ECE).

Findings

IPRBS is found to maintain a constant BPF in terms of deceleration rate vs pedal displacement during the entire braking period irrespective of speed change and deceleration rate. The regenerative ratio of IPRBS is found to be high compared with conventional parallel regenerative braking, but it is quite the same at high deceleration.

Originality/value

A constant BPF is achieved by introducing an RLS between the input pushrod and booster input rod with appropriate controller design. Comparative analysis of energy regenerated under different regenerative conditions establishes the originality of IPRBS. An average contribution ratio to energy consumption reduction and driving range extension of IPRBS in ECE are obtained as 18.38 and 22.76, respectively.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 May 2024

Shujing Li, Xiaojuan Huang, Zhiheng He, Yongxiang Liu, Hui Qu and Jing Wu

The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.

Abstract

Purpose

The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.

Design/methodology/approach

Analysis of flux linkage distributions and torque characteristics using finite element method (FEM). Building a dynamic simulation model based on electromagnetic characteristics, mathematical equations and mechanical motion equations of the DS-SRM drive system. The paper proposes multi-mode operations (inner-stator excitation mode, outer-stator excitation mode and double-stator excitation mode) based on motor working regions. It also conducts simulation and experimental results to verify the effectiveness of the proposed multi-mode operations strategies and control schemes.

Findings

There is almost no electromagnetic coupling between the inner and outer stators due to the specially designed rotor structure and optimized windings polarity configuration. Analysis of flux linkage distributions and torque characteristics verified the independence of inner and outer stators. Proposal of multi-mode operations and corresponding control rules achieved the smooth switching between different modes.

Originality/value

The paper introduced the DS-SRM for EVs and proposed multi-mode operations, along with control rules, to optimize its performance. The specially designed rotor structure, optimized winding polarity configuration, and the proposed multi-mode operations contribute to the originality of the research.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 14 November 2023

Leiting Zhao, Kan Liu, Donghui Liu and Zheming Jin

This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking…

Abstract

Purpose

This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor (BR) onboard the vehicle, which overcomes the vulnerability of having conventional temperature sensor.

Design/methodology/approach

In this study, the energy model based sensorless estimation method is developed. By analyzing the structure and the convection dissipation process of the BR onboard the vehicle, the energy-based operational temperature model of the BR and its cooling domain is established. By adopting Newton's law of cooling and the law of conservation of energy, the energy and temperature dynamic of the BR can be stated. To minimize the use of all kinds of sensors (including both thermal and electrical), a novel regenerative braking power calculation method is proposed, which involves only the voltage of DC traction network and the duty cycle of the chopping circuit; both of them are available for the traction control unit (TCU) of the vehicle. By utilizing a real-time iterative calculation and updating the parameter of the energy model, the operational temperature of the BR can be obtained and monitored in a sensorless manner.

Findings

In this study, a sensorless estimation/monitoring method of the operational temperature of BR is proposed. The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR, instead of adding dedicated thermal sensors. The results also validate the effectiveness of the proposal is acceptable for the engineering practical.

Originality/value

The proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks. The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.

1 – 6 of 6