Search results

1 – 10 of 777
Article
Publication date: 13 January 2022

Zeinab Rahimi Rise and Mohammad Mahdi Ershadi

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts…

Abstract

Purpose

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts of infectious diseases in comparison with predicted gross domestic product (GDP) in future years could be beneficial for this aim along with predicted social impacts of infectious diseases in countries.

Design/methodology/approach

The proposed uncertain SEIAR (susceptible, exposed, infectious, asymptomatic and removed) model evaluates the impacts of variables on different trends using scenario base analysis. This model considers different subsystems including healthcare systems, transportation, contacts and capacities of food and pharmaceutical networks for sensitivity analysis. Besides, an adaptive neuro-fuzzy inference system (ANFIS) is designed to predict the GDP of countries and determine the economic impacts of infectious diseases. These proposed models can predict the future socioeconomic trends of infectious diseases in each country based on the available information to guide the decisions of government planners and policymakers.

Findings

The proposed uncertain SEIAR model predicts social impacts according to uncertain parameters and different coefficients appropriate to the scenarios. It analyzes the sensitivity and the effects of various parameters. A case study is designed in this paper about COVID-19 in a country. Its results show that the effect of transportation on COVID-19 is most sensitive and the contacts have a significant effect on infection. Besides, the future annual costs of COVID-19 are evaluated in different situations. Private transportation, contact behaviors and public transportation have significant impacts on infection, especially in the determined case study, due to its circumstance. Therefore, it is necessary to consider changes in society using flexible behaviors and laws based on the latest status in facing the COVID-19 epidemic.

Practical implications

The proposed methods can be applied to conduct infectious diseases impacts analysis.

Originality/value

In this paper, a proposed uncertain SEIAR system dynamics model, related sensitivity analysis and ANFIS model are utilized to support different programs regarding policymaking and economic issues to face infectious diseases. The results could support the analysis of sensitivities, policies and economic activities.

Highlights:

  • A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

  • Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

  • Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

  • An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

  • A real case study is considered to evaluate the performances of the proposed models.

A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

A real case study is considered to evaluate the performances of the proposed models.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 12 January 2024

Pengyun Zhao, Shoufeng Ji and Yuanyuan Ji

This paper aims to introduce a novel structure for the physical internet (PI)–enabled sustainable supplier selection and inventory management problem under uncertain environments.

Abstract

Purpose

This paper aims to introduce a novel structure for the physical internet (PI)–enabled sustainable supplier selection and inventory management problem under uncertain environments.

Design/methodology/approach

To address hybrid uncertainty both in the objective function and constraints, a novel interactive hybrid multi-objective optimization solution approach combining Me-based fuzzy possibilistic programming and interval programming approaches is tailored.

Findings

Various numerical experiments are introduced to validate the feasibility of the established model and the proposed solution method.

Originality/value

Due to its interconnectedness, the PI has the opportunity to support firms in addressing sustainability challenges and reducing initial impact. The sustainable supplier selection and inventory management have become critical operational challenges in PI-enabled supply chain problems. This is the first attempt on this issue, which uses the presented novel interactive possibilistic programming method.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 March 2024

Mohd Mustaqeem, Suhel Mustajab and Mahfooz Alam

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have…

Abstract

Purpose

Software defect prediction (SDP) is a critical aspect of software quality assurance, aiming to identify and manage potential defects in software systems. In this paper, we have proposed a novel hybrid approach that combines Gray Wolf Optimization with Feature Selection (GWOFS) and multilayer perceptron (MLP) for SDP. The GWOFS-MLP hybrid model is designed to optimize feature selection, ultimately enhancing the accuracy and efficiency of SDP. Gray Wolf Optimization, inspired by the social hierarchy and hunting behavior of gray wolves, is employed to select a subset of relevant features from an extensive pool of potential predictors. This study investigates the key challenges that traditional SDP approaches encounter and proposes promising solutions to overcome time complexity and the curse of the dimensionality reduction problem.

Design/methodology/approach

The integration of GWOFS and MLP results in a robust hybrid model that can adapt to diverse software datasets. This feature selection process harnesses the cooperative hunting behavior of wolves, allowing for the exploration of critical feature combinations. The selected features are then fed into an MLP, a powerful artificial neural network (ANN) known for its capability to learn intricate patterns within software metrics. MLP serves as the predictive engine, utilizing the curated feature set to model and classify software defects accurately.

Findings

The performance evaluation of the GWOFS-MLP hybrid model on a real-world software defect dataset demonstrates its effectiveness. The model achieves a remarkable training accuracy of 97.69% and a testing accuracy of 97.99%. Additionally, the receiver operating characteristic area under the curve (ROC-AUC) score of 0.89 highlights the model’s ability to discriminate between defective and defect-free software components.

Originality/value

Experimental implementations using machine learning-based techniques with feature reduction are conducted to validate the proposed solutions. The goal is to enhance SDP’s accuracy, relevance and efficiency, ultimately improving software quality assurance processes. The confusion matrix further illustrates the model’s performance, with only a small number of false positives and false negatives.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 22 March 2021

Sathish K. R. and T. Ananthapadmanabha

This paper aims to propose, the multi-objective method for optimal planning and operation of distributed generators (DGs) on distribution system (DS) using hybrid technique is…

Abstract

Purpose

This paper aims to propose, the multi-objective method for optimal planning and operation of distributed generators (DGs) on distribution system (DS) using hybrid technique is proposed.

Design/methodology/approach

The proposed hybrid technique denotes hybrid wrapper of black widow optimization algorithm (BWOA) and bear smell search algorithm (BSSA). BWOA accelerates the convergence speed with combination of the search strategy of BSSA; hence, it is named as improved black widow-bear smell search algorithm (IBWBSA) technique.

Findings

The multiple-objective operation denotes reducing generation cost, power loss, voltage deviation with optimally planning and operating the DS. For setting up the DG units on DS, IBWBSA technique is equipped to simultaneously reconfigure and find the optimal areas.

Originality/value

In this planning model, the constraints are power balance, obvious power flow limit, bus voltage, distribution substation’s capacity and cost. Then, proposed multiple-objective hybrid method to plan electrical distribution scheme is executed in the MATLAB/Simulink work site.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 September 2023

Mohammad Hossein Dehghani Sadrabadi, Ahmad Makui, Rouzbeh Ghousi and Armin Jabbarzadeh

The adverse interactions between disruptions can increase the supply chain's vulnerability. Accordingly, establishing supply chain resilience to deal with disruptions and…

Abstract

Purpose

The adverse interactions between disruptions can increase the supply chain's vulnerability. Accordingly, establishing supply chain resilience to deal with disruptions and employing business continuity planning to preserve risk management achievements is of considerable importance. The aforementioned idea is discussed in this study.

Design/methodology/approach

This study proposes a multi-objective optimization model for employing business continuity management and organizational resilience in a supply chain for responding to multiple interrelated disruptions. The improved augmented e-constraint and the scenario-based robust optimization methods are adopted for multi-objective programming and dealing with uncertainty, respectively. A case study of the automotive battery manufacturing industry is also considered to ensure real-world conformity of the model.

Findings

The results indicate that interactions between disruptions remarkably increase the supply chain's vulnerability. Choosing a higher fortification level for the supply chain and foreign suppliers reduces disruption impacts on resources and improves the supply chain's resilience and business continuity. Facilities dispersion, fortification of facilities, lateral transshipment, order deferral policy, dynamic capacity planning and direct transportation of products to markets are the most efficient resilience strategies in the under-study industry.

Originality/value

Applying resource allocation planning and portfolio selection to adopt preventive and reactive resilience strategies simultaneously to manage multiple interrelated disruptions in a real-world automotive battery manufacturing industry, maintaining the long-term achievements of supply chain resilience using business continuity management and dynamic capacity planning are the main contributions of the presented paper.

Article
Publication date: 13 May 2024

Vu Hong Son Pham, Nghiep Trinh Nguyen Dang and Nguyen Van Nam

For successful management of construction projects, a precise analysis of the balance between time and cost is imperative to attain the most effective results. The aim of this…

Abstract

Purpose

For successful management of construction projects, a precise analysis of the balance between time and cost is imperative to attain the most effective results. The aim of this study is to present an innovative approach tailored to tackle the challenges posed by time-cost trade-off (TCTO) problems. This objective is achieved through the integration of the multi-verse optimizer (MVO) with opposition-based learning (OBL), thereby introducing a groundbreaking methodology in the field.

Design/methodology/approach

The paper aims to develop a new hybrid meta-heuristic algorithm. This is achieved by integrating the MVO with OBL, thereby forming the iMVO algorithm. The integration enhances the optimization capabilities of the algorithm, notably in terms of exploration and exploitation. Consequently, this results in expedited convergence and yields more accurate solutions. The efficacy of the iMVO algorithm will be evaluated through its application to four different TCTO problems. These problems vary in scale – small, medium and large – and include real-life case studies that possess complex relationships.

Findings

The efficacy of the proposed methodology is evaluated by examining TCTO problems, encompassing 18, 29, 69 and 290 activities, respectively. Results indicate that the iMVO provides competitive solutions for TCTO problems in construction projects. It is observed that the algorithm surpasses previous algorithms in terms of both mean deviation percentage (MD) and average running time (ART).

Originality/value

This research represents a significant advancement in the field of meta-heuristic algorithms, particularly in their application to managing TCTO in construction projects. It is noteworthy for being among the few studies that integrate the MVO with OBL for the management of TCTO in construction projects characterized by complex relationships.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 May 2023

Vu Hong Son Pham, Nguyen Thi Nha Trang and Chau Quang Dat

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Abstract

Purpose

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Design/methodology/approach

The paper focused on developing a new metaheuristic swarm intelligence algorithm using Java code. The paper used statistical criterion: mean, standard deviation, running time to verify the effectiveness of the proposed optimization method and compared its derivatives with other algorithms, such as genetic algorithm (GA), Tabu search (TS), bee colony optimization (BCO), ant lion optimizer (ALO), grey wolf optimizer (GWO), dragonfly algorithm (DA) and particle swarm optimization (PSO).

Findings

The paper proved that integrating GWO and DA yields better results than independent algorithms and some selected algorithms in the literature. It also suggests that multi-independent batch plants could effectively cooperate in a system to deliver RMC to various construction sites.

Originality/value

The paper provides a compelling new hybrid swarm intelligence algorithm and a model allowing multi-independent batch plants to work in a system to deliver RMC. It fulfills an identified need to study how batch plant managers can expand their dispatching network, increase their competitiveness and improve their supply chain operations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 777