Search results

1 – 6 of 6
Article
Publication date: 23 August 2022

Fariba Hosseinpour, Mahyar Seddighi, Mohammad Amerzadeh and Sima Rafiei

This study aimed to compare mortality rate, length of stay (LOS) and hospitalization costs at different priority levels for a patient admitted to an intensive care unit (ICU) at a…

Abstract

Purpose

This study aimed to compare mortality rate, length of stay (LOS) and hospitalization costs at different priority levels for a patient admitted to an intensive care unit (ICU) at a public tertiary hospital in Qazvin, Iran. This study also aimed to predict influencing factors on patients’ mortality, ICU LOS and hospitalization costs in different admission groups.

Design/methodology/approach

The authors conducted a retrospective cohort study among patients who mainly suffered from internal diseases admitted to an ICU of a public hospital. This study was conducted among 127 patients admitted to ICU from July to September 2019. The authors categorized patients into four groups based on two crucial hemodynamic and respiratory status criteria. The authors used a logistic regression model to predict the likelihood of mortality in ICU admitted patients during hospitalizations for the four prioritization groups. Furthermore, the authors conducted a multivariate analysis using the “enter” method to identify risk factors for LOS.

Findings

Results showed a statistically significant relationship between the priority of being admitted to ICU and hospitalization costs. The authors’ findings revealed that age, LOS and levels of consciousness had a predictability role in determining in-hospital mortality. Besides, age, gender, consciousness level of patients and type of the disease were mentioned as affecting factors of LOS.

Originality/value

This study’s findings emphasize the necessity of categorizing patients according to specific criteria to efficiently use available resources to help health-care authorities reduce the costs and allocate the budget to different health sectors.

Details

International Journal of Human Rights in Healthcare, vol. 17 no. 1
Type: Research Article
ISSN: 2056-4902

Keywords

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2023

Swapnil Narayan Rajmane and Shaligram Tiwari

This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and…

Abstract

Purpose

This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and Reynolds number (Re) of 425, based on the diameter of normal artery and average velocity of inlet pulse, was considered.

Design/methodology/approach

Finite volume method based ANSYS Fluent 20.1 was used for solving the governing equations of three-dimensional, laminar, incompressible and non-Newtonian blood flow. A high-quality grid with sufficient refinement was generated using ICEM CFD 20.1. The time-averaged flow field was captured to investigate the effect of severity and eccentricity on the lumen flow characteristics.

Findings

The results show that an increase in interspacing between blockages brings shear layer instability within the region between two blockages. The velocity profile and wall shear stress distribution are found to be majorly influenced by eccentricity. On the other hand, their peak magnitude is found to be primarily influenced by severity. Results have also demonstrated that the presence of eccentricity in stenosis would assist in flow development.

Originality/value

Variation in severity and interspacing was considered with a provision of eccentricity equal to 10% of diameter. Eccentricity refers to the offset between the centreline of stenosis and the centreline of normal artery. For the two blockages, severity values of 40% and 60% based on diameter reduction were permuted, giving rise to four combinations. For each combination, three values of interspacing in the multiples of normal artery diameter (D), viz. 4D, 6D and 8D were considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2024

Douglas Ramalho Queiroz Pacheco

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Abstract

Purpose

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Design/methodology/approach

We use integration by parts twice to shift smoothness requirements to the test functions, thereby allowing low-regularity data and solutions.

Findings

Various conforming discretisations are presented and tested, with numerical results indicating good accuracy and stability in different types of problems.

Originality/value

This is one of the first articles to propose and test concrete discretisations for very weak variational formulations in primal form. The numerical results, which include a problem based on real MRI data, indicate the potential of very weak finite element methods for tackling problems with low regularity.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 July 2023

Syed Sohaib Zafar, Aurang Zaib, Farhan Ali, Fuad S. Alduais, Afrah Al Bossly and Anwar Saeed

The modern day has seen an increase in the prevalence of the improvement of high-performance thermal systems for the enhancement of heat transmission. Numerous studies and…

Abstract

Purpose

The modern day has seen an increase in the prevalence of the improvement of high-performance thermal systems for the enhancement of heat transmission. Numerous studies and research projects have been carried out to acquire an understanding of heat transport performance for their functional application to heat conveyance augmentation. The idea of this study is to inspect the entropy production in Darcy-Forchheimer Ree-Eyring nanofluid containing bioconvection flow toward a stretching surface is the topic of discussion in this paper. It is also important to take into account the influence of gravitational forces, double stratification, heat source–sink and thermal radiation. In light of the second rule of thermodynamics, a model of the generation of total entropy is presented.

Design/methodology/approach

Incorporating boundary layer assumptions allows one to derive the governing system of partial differential equations. The dimensional flow model is transformed into a non-dimensional representation by applying the appropriate transformations. To deal with dimensionless flow expressions, the built-in shooting method and the BVP4c code in the Matlab software are used. Graphical analysis is performed on the data to investigate the variation in velocity, temperature, concentration, motile microorganisms, Bejan number and entropy production concerning the involved parameters.

Findings

The authors have analytically assessed the impact of Darcy Forchheimer's flow of nanofluid due to a spinning disc with slip conditions and microorganisms. The modeled equations are reset into the non-dimensional form of ordinary differential equations. Which are further solved through the BVP4c approach. The results are presented in the form of tables and figures for velocity, mass, energy and motile microbe profiles. The key conclusions are: The rate of skin friction incessantly reduces with the variation of the Weissenberg number, porosity parameter and Forchheimer number. The rising values of the Prandtl number reduce the energy transmission rate while accelerating the mass transfer rate. Similarly, the effect of Nb (Brownian motion) enhances the energy and mass transfer rates. The rate of augments with the flourishing values of bioconvection Lewis and Peclet number. The factor of concentration of microorganisms is reported to have a diminishing effect on the profile. The velocity, energy and entropy generation enhance with the rising values of the Weissenberg number.

Originality/value

According to the findings of the study, a slip flow of Ree-Eyring nanofluid was observed in the presence of entropy production and heat sources/sinks. There are features when the implementations of Darcy–Forchheimer come into play. In addition to that, double stratification with chemical reaction characteristics is presented as a new feature. The flow was caused by the stretching sheet. It has been brought to people's attention that although there are some investigations accessible on the flow of Ree-Eyring nanofluid with double stratification, they are not presented. This research draws attention to a previously unexplored topic and demonstrates a successful attempt to construct a model with distinctive characteristics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 July 2023

Alin V. Roşca, Natalia C. Roşca, Ioan Pop and Mikhail A. Sheremet

This paper aims to study numerically the steady natural convective heat transfer of a hybrid nanosuspension (Ag-MgO/H2O) within a partially heated/cooled trapezoidal region with…

88

Abstract

Purpose

This paper aims to study numerically the steady natural convective heat transfer of a hybrid nanosuspension (Ag-MgO/H2O) within a partially heated/cooled trapezoidal region with linear temperature profiles at inclined walls under an effect of uniform Lorentz force. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates.

Design/methodology/approach

The governing equations formulated using the Oberbeck–Boussinesq approach and single-phase nanoliquid model are transformed to a non-dimensional form by using non-dimensional variables. The obtained equations with appropriate boundary conditions are resolved by the finite difference technique. The developed code has been validated comprehensively. Analysis has been performed for a wide range of governing parameters, including Rayleigh number (Ra = 105), Prandtl number (Pr = 6.82), Hartmann number (Ha = 0–100), magnetic field inclination angle (φ = 0–?/2) and nanoparticles volume fraction (φhnf = 0 and 2%).

Findings

It has been shown that inclined magnetic field can be used to manage the energy transport performance. An inclusion of nanoparticles without Lorentz force influence allows forming more stable convective regime with descending heat plume in the central zone, while such a regime was performed for clear fluid only for moderate and high Hartmann numbers. Moreover, the average overall entropy generation can be decreased with a growth of the Hartmann number, while an addition of hybrid nanoparticles allows reducing this parameter for Ha = 30 and 50. The average Nusselt number can be increased with a growth of the nanoparticles concentration for low values of the magnetic field intensity.

Originality/value

Governing equations written using the conservation laws and dimensionless non-primitive variables have been resolved by the finite difference approach. The created numerical code has been verified by applying the grid independence test and computational outcomes of other researchers. The comprehensive analysis for various key parameters has been performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 6 of 6